Date Log

This work is licensed under a Creative Commons Attribution 4.0 International License.
Google Trends as Indicator of Social Preferences: Causality and Intervention in Poland’s Housing Market
Corresponding Author(s) : Mirosław Bełej
Geomatics and Environmental Engineering,
Vol. 20 No. 1 (2026): Geomatics and Environmental Engineering
Abstract
The article’s primary purpose was to explore the potential of Internet searches for keywords that were related to the polish housing market in order to understand the public’s current preferences or reactions to changes in the market environment. The research used data that was downloaded from Google Trend (RSV) from 2010 through 2024. The Granger causality test was then applied to the relationship between RSV and housing prices, and a Bayesian structural time-series model was applied to examine the impact of the external intervention (COVID-19) on the RSV dynamics. The results indicated that significant changes in the market environment could influence fluctuations in interest in housing, as was evidenced by the changes in the online searches. The article respectfully suggests that a more nuanced understanding of market dynamics might be achieved through a thoughtful integration of classical economic data with non-classical Internet data.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Yang S., Santillana M., Kou S.C.: Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences of the United States of America, vol. 112(47), 2015, pp. 14473–14478. https://doi.org/10.1073/pnas.1515373112.
- Kokot S.: The analysis of differences in residential property price indices. Real Estate Management and Valuation, vol. 22(3), 2014, pp. 14–27. https://doi.org/10.2478/remav-2014-0023.
- Bełej M.: Predicting housing price trends in Poland: Online social engagement – Google Trends. Real Estate Management and Valuation, vol. 31(4), 2023, pp. 73–87. https://doi.org/10.2478/remav-2023-0032.
- Bulczak G.M.: Use of Google Trends to predict the real estate market: Evidence from the United Kingdom. International Real Estate Review, vol. 24(4), 2021, pp. 613–631. https://doi.org/10.53383/100332.
- Dietzel M.: Sentiment-based predictions of housing market turning points with Google Trends, [in:] 22nd annual European Real Estate Society Conference, ERES, Istanbul 2015. https://doi.org/10.15396/eres2015_3.
- Pfaff B.: VAR, SVAR and SVEC models: Implementation within R package vars. Journal of Statistical Software, vol. 27(4), 2008, pp. 1–32. https://doi.org/10.18637/jss.v027.i04.
- Wickham H., Averick M., Bryan J., Chang W., D’Agostino McGowan L., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Lin Pedersen T., Miller E., Bache S.M., Müller K., Ooms J., Robinson D., Seidel D.P., ..., Yutani H.: Welcome to the tidyverse. Journal of Open Source Software, vol. 4(43), 2019, 1686. https://doi.org/10.21105/joss.01686.
- Hackenberger B.K.: R software: unfriendly but probably the best. Croatian Medical Journal, vol. 61(1), 2020, pp. 66–68. https://doi.org/10.3325/cmj.2020.61.66.
- Brodersen K.H., Gallusser F., Koehler J., Remy N., Scott S.L.: Inferring causal impact using Bayesian structural time-series models. Annals of Applied Statistics, vol. 9(1), 2015, pp. 247–274. https://doi.org/10.1214/14-AOAS788.
- Adams Z., Füss R.: Macroeconomic determinants of international housing markets. Journal of Housing Economics, vol. 19(1), 2010, pp. 38–50. https://doi.org/10.1016/j.jhe.2009.10.005.
- Drachal K.: Causality in the Polish housing market: Evidence from biggest cities. Financial Assets and Investing, vol. 9(1), 2018, pp. 5–20. https://doi.org/10.5817/FAI2018-1-1.
- Lis P.: Wahania cykliczne rynków mieszkaniowych: Aspekty teoretyczne i praktyczne. Wydawnictwo Adam Marszałek, Toruń 2012.
- Tamari S., Katoshevski R., Karplus Y., Dinero S.C.: Urban tribalism: Negotiating form, function and social milieu in Bedouin towns, Israel. City, Territory and Architecture, vol. 3(1), 2016, 2. https://doi.org/10.1186/s40410-016-0031-3.
- Kodila-Tedika O., Asongu S.A.: Tribalism and financial development. African Governance and Development Institute Working Paper, WP/15/018, May 30, 2015. https://doi.org/10.2139/ssrn.2612429.
- Muellbauer J., Murphy A.: Housing markets and the economy: The assessment. Oxford Review of Economic Policy, vol. 24(1), 2008, pp. 1–33. https://doi.org/10.1093/oxrep/grn011.
- Hendershott P.H., Abraham J.M.: Patterns and Determinants of Metropolitan House Prices, 1977–91. NBER Working Paper, no. 4196, National Bureau of Economic Research, Cambridge, MA, 1992. https://doi.org/10.3386/w4196.
- Marsh A., Gibb K.: Uncertainty, expectations and behavioural aspects of housing market choices. Housing, Theory and Society, vol. 28(3), 2011, pp. 215–235. https://doi.org/10.1080/14036096.2011.599182.
- Olszak C.M., Ziemba E.: The information society development strategy on a regional level. Issues in Informing Science and Information Technology, vol. 6, 2009, pp. 213–225. https://doi.org/10.28945/1054.
- Duff A.S.: Information Society Studies. Routledge, London 2013. https://doi.org/10.4324/9781315812250.
- Colombo A.W., Karnouskos S., Yu X., Kaynak O., Luo R.C., Shi Y., Leitão P., Ribeiro L., Haase J.: A 70-year Industrial Electronics Society evolution through industrial revolutions: The rise and flourishing of information and communication technologies. IEEE Industrial Electronics Magazine, vol. 15(1), 2021, pp. 115–126. https://doi.org/10.1109/MIE.2020.3028058.
- Bełej M.: Does Google Trends show the strength of social interest as a predictor of housing price dynamics? Sustainability, vol. 14(9), 2022, 5601. https://doi.org/10.3390/SU14095601.
- Limnios A.C., You H.: Can Google Trends improve housing market forecasts? Curiosity: Interdisciplinary Journal of Research and Innovation, vol. 2, 2021, pp. 1–18. https://doi.org/10.36898/001c.21987.
- Castelnuovo E., Tran T.D.: Google it up! A Google Trends-based uncertainty index for the United States and Australia. Economics Letters, vol. 161, 2017, pp. 149–153. https://doi.org/10.1016/j.econlet.2017.09.032.
- Huarng K.-H., Hui-Kuang Y.T., Rodriguez-Garcia M.: Qualitative analysis of housing demand using Google Trends data. Economic Research-Ekonomska Istraživanja, vol. 33(1), 2020, pp. 2007–2017. https://doi.org/10.1080/1331677X.2018.1547205.
- Matias Y.: Nowcasting with Google Trends, [in:] Kurland O., Lewenstein M., Porat E. (eds.), String Processing and Information Retrieval: 20th International Symposium, SPIRE 2013, Jerusalem, Israel, October 7–9, 2013, Proceedings, Lecture Notes in Computer Science, vol. 8214, Springer, Cham 2013, p. 4. https://doi.org/10.1007/978-3-319-02432-5_4.
- Askitas N.: Trend-spotting in the housing market. Cityscape, vol. 18(2), 2016, pp. 165–178. https://doi.org/10.2139/ssrn.2675484.
- Rizun N., Baj-Rogowska A.: Can web search queries predict prices change on the real estate market? IEEE Access, vol. 9, 2021, pp. 70095–70117. https://doi.org/10.1109/ACCESS.2021.3077860.
- Bełej M.: Analysis of the relationship between COVID-19 infections and web-based housing searches. Real Estate Management and Valuation, vol. 30(4), 2022, pp. 89–102. https://doi.org/10.2478/remav-2022-0031.
- Massicotte P., Eddelbuettel D.: gtrendsR: Perform and display Google Trends queries. R package version, https://cran.r-project.org/web/packages/gtrendsR/index.html [access: March 31, 2025].
- Jacoby W.G.: Loess: A nonparametric, graphical tool for depicting relationships between variables. Electoral Studies, vol. 19(4), 2000, pp. 577–613. https://doi.org/10.1016/S0261-3794(99)00028-1.
- Kusideł E.: Modele wektorowo-autoregresyjne VAR: Metodologia i zastosowania. Absolwent, Łódź 2000.
- Hmamouche H.: NlinTS: An R package for causality detection in time series. The R Journal, vol. 12(1), 2020, pp. 21–31. https://doi.org/10.32614/RJ-2020-016.
- Granger C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica, vol. 37(3), 1969, 424. https://doi.org/10.2307/1912791.
- Scott S.L., Varian H.R.: Predicting the present with Bayesian structural time series. International Journal of Mathematical Modelling and Numerical Optimisation, vol. 5(1–2), 2014, pp. 4–23.
- Cajita M.I., Whitehouse E., Budhathoki C., Hodgson N.: Association between Internet use and decision-making preference in older adults. Gerontechnology, vol. 14(2), 2016, pp. 97–104. https://doi.org/10.4017/gt.2016.14.2.008.00.
- Lagan B.M., Sinclair M., Kernohan W.G.: What is the impact of the Internet on decision making in pregnancy? A global study. Obstetric Anesthesia Digest, vol. 32(4), 2012, pp. 211–212. https://doi.org/10.1097/01.aoa.0000422689.35910.77.
- Maziarz M.: A review of the Granger-causality fallacy. The Journal of Philosophical Economics: Reflections on Economic and Social Issues, vol. 8(2), 2015, pp. 86–105. https://doi.org/10.46298/jpe.10676.
References
Yang S., Santillana M., Kou S.C.: Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences of the United States of America, vol. 112(47), 2015, pp. 14473–14478. https://doi.org/10.1073/pnas.1515373112.
Kokot S.: The analysis of differences in residential property price indices. Real Estate Management and Valuation, vol. 22(3), 2014, pp. 14–27. https://doi.org/10.2478/remav-2014-0023.
Bełej M.: Predicting housing price trends in Poland: Online social engagement – Google Trends. Real Estate Management and Valuation, vol. 31(4), 2023, pp. 73–87. https://doi.org/10.2478/remav-2023-0032.
Bulczak G.M.: Use of Google Trends to predict the real estate market: Evidence from the United Kingdom. International Real Estate Review, vol. 24(4), 2021, pp. 613–631. https://doi.org/10.53383/100332.
Dietzel M.: Sentiment-based predictions of housing market turning points with Google Trends, [in:] 22nd annual European Real Estate Society Conference, ERES, Istanbul 2015. https://doi.org/10.15396/eres2015_3.
Pfaff B.: VAR, SVAR and SVEC models: Implementation within R package vars. Journal of Statistical Software, vol. 27(4), 2008, pp. 1–32. https://doi.org/10.18637/jss.v027.i04.
Wickham H., Averick M., Bryan J., Chang W., D’Agostino McGowan L., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Lin Pedersen T., Miller E., Bache S.M., Müller K., Ooms J., Robinson D., Seidel D.P., ..., Yutani H.: Welcome to the tidyverse. Journal of Open Source Software, vol. 4(43), 2019, 1686. https://doi.org/10.21105/joss.01686.
Hackenberger B.K.: R software: unfriendly but probably the best. Croatian Medical Journal, vol. 61(1), 2020, pp. 66–68. https://doi.org/10.3325/cmj.2020.61.66.
Brodersen K.H., Gallusser F., Koehler J., Remy N., Scott S.L.: Inferring causal impact using Bayesian structural time-series models. Annals of Applied Statistics, vol. 9(1), 2015, pp. 247–274. https://doi.org/10.1214/14-AOAS788.
Adams Z., Füss R.: Macroeconomic determinants of international housing markets. Journal of Housing Economics, vol. 19(1), 2010, pp. 38–50. https://doi.org/10.1016/j.jhe.2009.10.005.
Drachal K.: Causality in the Polish housing market: Evidence from biggest cities. Financial Assets and Investing, vol. 9(1), 2018, pp. 5–20. https://doi.org/10.5817/FAI2018-1-1.
Lis P.: Wahania cykliczne rynków mieszkaniowych: Aspekty teoretyczne i praktyczne. Wydawnictwo Adam Marszałek, Toruń 2012.
Tamari S., Katoshevski R., Karplus Y., Dinero S.C.: Urban tribalism: Negotiating form, function and social milieu in Bedouin towns, Israel. City, Territory and Architecture, vol. 3(1), 2016, 2. https://doi.org/10.1186/s40410-016-0031-3.
Kodila-Tedika O., Asongu S.A.: Tribalism and financial development. African Governance and Development Institute Working Paper, WP/15/018, May 30, 2015. https://doi.org/10.2139/ssrn.2612429.
Muellbauer J., Murphy A.: Housing markets and the economy: The assessment. Oxford Review of Economic Policy, vol. 24(1), 2008, pp. 1–33. https://doi.org/10.1093/oxrep/grn011.
Hendershott P.H., Abraham J.M.: Patterns and Determinants of Metropolitan House Prices, 1977–91. NBER Working Paper, no. 4196, National Bureau of Economic Research, Cambridge, MA, 1992. https://doi.org/10.3386/w4196.
Marsh A., Gibb K.: Uncertainty, expectations and behavioural aspects of housing market choices. Housing, Theory and Society, vol. 28(3), 2011, pp. 215–235. https://doi.org/10.1080/14036096.2011.599182.
Olszak C.M., Ziemba E.: The information society development strategy on a regional level. Issues in Informing Science and Information Technology, vol. 6, 2009, pp. 213–225. https://doi.org/10.28945/1054.
Duff A.S.: Information Society Studies. Routledge, London 2013. https://doi.org/10.4324/9781315812250.
Colombo A.W., Karnouskos S., Yu X., Kaynak O., Luo R.C., Shi Y., Leitão P., Ribeiro L., Haase J.: A 70-year Industrial Electronics Society evolution through industrial revolutions: The rise and flourishing of information and communication technologies. IEEE Industrial Electronics Magazine, vol. 15(1), 2021, pp. 115–126. https://doi.org/10.1109/MIE.2020.3028058.
Bełej M.: Does Google Trends show the strength of social interest as a predictor of housing price dynamics? Sustainability, vol. 14(9), 2022, 5601. https://doi.org/10.3390/SU14095601.
Limnios A.C., You H.: Can Google Trends improve housing market forecasts? Curiosity: Interdisciplinary Journal of Research and Innovation, vol. 2, 2021, pp. 1–18. https://doi.org/10.36898/001c.21987.
Castelnuovo E., Tran T.D.: Google it up! A Google Trends-based uncertainty index for the United States and Australia. Economics Letters, vol. 161, 2017, pp. 149–153. https://doi.org/10.1016/j.econlet.2017.09.032.
Huarng K.-H., Hui-Kuang Y.T., Rodriguez-Garcia M.: Qualitative analysis of housing demand using Google Trends data. Economic Research-Ekonomska Istraživanja, vol. 33(1), 2020, pp. 2007–2017. https://doi.org/10.1080/1331677X.2018.1547205.
Matias Y.: Nowcasting with Google Trends, [in:] Kurland O., Lewenstein M., Porat E. (eds.), String Processing and Information Retrieval: 20th International Symposium, SPIRE 2013, Jerusalem, Israel, October 7–9, 2013, Proceedings, Lecture Notes in Computer Science, vol. 8214, Springer, Cham 2013, p. 4. https://doi.org/10.1007/978-3-319-02432-5_4.
Askitas N.: Trend-spotting in the housing market. Cityscape, vol. 18(2), 2016, pp. 165–178. https://doi.org/10.2139/ssrn.2675484.
Rizun N., Baj-Rogowska A.: Can web search queries predict prices change on the real estate market? IEEE Access, vol. 9, 2021, pp. 70095–70117. https://doi.org/10.1109/ACCESS.2021.3077860.
Bełej M.: Analysis of the relationship between COVID-19 infections and web-based housing searches. Real Estate Management and Valuation, vol. 30(4), 2022, pp. 89–102. https://doi.org/10.2478/remav-2022-0031.
Massicotte P., Eddelbuettel D.: gtrendsR: Perform and display Google Trends queries. R package version, https://cran.r-project.org/web/packages/gtrendsR/index.html [access: March 31, 2025].
Jacoby W.G.: Loess: A nonparametric, graphical tool for depicting relationships between variables. Electoral Studies, vol. 19(4), 2000, pp. 577–613. https://doi.org/10.1016/S0261-3794(99)00028-1.
Kusideł E.: Modele wektorowo-autoregresyjne VAR: Metodologia i zastosowania. Absolwent, Łódź 2000.
Hmamouche H.: NlinTS: An R package for causality detection in time series. The R Journal, vol. 12(1), 2020, pp. 21–31. https://doi.org/10.32614/RJ-2020-016.
Granger C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica, vol. 37(3), 1969, 424. https://doi.org/10.2307/1912791.
Scott S.L., Varian H.R.: Predicting the present with Bayesian structural time series. International Journal of Mathematical Modelling and Numerical Optimisation, vol. 5(1–2), 2014, pp. 4–23.
Cajita M.I., Whitehouse E., Budhathoki C., Hodgson N.: Association between Internet use and decision-making preference in older adults. Gerontechnology, vol. 14(2), 2016, pp. 97–104. https://doi.org/10.4017/gt.2016.14.2.008.00.
Lagan B.M., Sinclair M., Kernohan W.G.: What is the impact of the Internet on decision making in pregnancy? A global study. Obstetric Anesthesia Digest, vol. 32(4), 2012, pp. 211–212. https://doi.org/10.1097/01.aoa.0000422689.35910.77.
Maziarz M.: A review of the Granger-causality fallacy. The Journal of Philosophical Economics: Reflections on Economic and Social Issues, vol. 8(2), 2015, pp. 86–105. https://doi.org/10.46298/jpe.10676.