Date Log

This work is licensed under a Creative Commons Attribution 4.0 International License.
Geologic Control of Soil-Infiltration Rate Based on Artificial Neural Network Models
Corresponding Author(s) : Totok Sulistyo
Geomatics and Environmental Engineering,
Vol. 20 No. 1 (2026): Geomatics and Environmental Engineering
Abstract
The interconnected porosity of soil provides conduit channels for the downward infiltration of water into the subsurface; this occurs in soil layers and within soil-less areas or geologic formations. The lithology and geological structure significantly influence the infiltration capacity of soils and are crucial in determining whether the infiltration water continuously reaches an aquifer or becomes stagnant in the saturated soil. An artificial neural network (ANN) algorithm was employed to model the actual infiltration rate, incorporating soil texture and soil moisture along with geological scores as inputs and actual infiltration rates as outputs. This study aimed to quantify qualitative geological data and incorporate it into ANN model parameters. The development of the ANN infiltration model involved two serial trial-and-error experiments to determine the optimal number of nodes in the hidden layer, ranging from nodes c(4,2) to c(12,2), one serial experiment with geological input, and the other without geological input. Throughout the model testing, metrics such as MAE, RMSE, and MSE were recorded, and the first and second optimum models were identified when employing c(9,2) nodes of hidden layers. The resulting model can be used to predict actual infiltration and will be beneficial for hydrometeorological-disaster mitigation and city-development planning.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Sulistyo T., Fauzi R.: Soil infiltration rate prediction using machine learning regression model: A case study on Sepinggan River Basin, Balikpapan, Indonesia. Indonesian Journal on Geoscience, vol. 10(3), 2023, pp. 335–347. https://doi.org/10.17014/ijog.10.3.335-347.
- Deulkar A.M., Londhe S.N., Jain R.K., Dixit P.R.: Rainfall-runoff modelling using artificial neural networks (ANNs) for Upper Krishna Basin, Maharashtra, India, [in:] Timbadiya P.V., Patel P.L., Singh V.P., Mirajkar A.B. (eds.), Geospatial and Soft Computing Techniques: HYDRO 2021, Lecture Notes in Civil Engineering, vol. 339, Springer, Singapore 2023, pp. 439–450. https://doi.org/10.1007/978-981-99-1901-7_35.
- Alfaro I.A., Chavez J.A., Cuestas I.E., Mejía C.J., Landaverde M., Campos S.: Study on infiltration and its relationship with the geology of the Metropolitan Area of San Salvador, El Salvador. Revista Geológica de América Central, no. 63, 2020, pp. 40–57.
- Basset C., Abou Najm M., Ghezzehei T., Hao X., Daccache A.: How does soil structure affect water infiltration? A meta-data systematic review. Soil & Tillage Research, vol. 226, 2023, 105577. https://doi.org/10.1016/j.still.2022.105577.
- Cleophas F., Isidore F., Musta B., Mohd Ali B.N., Mahali M., Zahari N.Z., Bidin K.: Effect of soil physical properties on soil infiltration rates. Journal of Physics: Conference Series, vol. 2314(1), 2022, 012020. https://doi.org/10.1088/1742-6596/2314/1/012020.
- Cui Z., Wu G.L., Huang Z., Liu Y.: Fine roots determine soil infiltration potential than soil water content in semi-arid grassland soils. Journal of Hydrology (Amsterdam), vol. 578, 2019, 124023. https://doi.org/10.1016/j.jhydrol.2019.124023.
- Abdelkareem M., Al-Arifi N.: The use of remotely sensed data to reveal geologic, structural, and hydrologic features and predict potential areas of water resources in arid regions. Arabian Journal of Geosciences, vol. 14(704), 2021, pp. 2–15. https://doi.org/10.1007/s12517-021-06942-6.
- Beetle-Moorcroft F., Shanafield M., Singha K.: Exploring conceptual models of infiltration and groundwater recharge on an intermittent river: The role of geologic controls. Journal of Hydrology: Regional Studies, vol. 35, 2021, 100814. https://doi.org/10.1016/j.ejrh.2021.100814.
- Sulistyo T., Respati S.: The estimation of flood area based on a few selected and weighted parameters: case study of the Nangka River basin, Balikpapan (Indonesia). Journal of the Geographical Institute Jovan Cvijic SASA, vol. 73(2), 2023, pp. 123–137. https://doi.org/10.2298/IJGI2302123S.
- Dahan O., Shani Y., Enzel Y., Yechieli Y., Yakirevich A.: Direct measurements of floodwater infiltration into shallow alluvial aquifers. Journal of Hydrology (Amsterdam), vol. 344(3–4), 2007, pp. 157–170. https://doi.org/10.1016/j.jhydrol.2007.06.033.
- Shanafield M., Cook P.G.: Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: A review of applied methods. Journal of Hydrology (Amsterdam), vol. 511, 2014, pp. 518–529. https://doi.org/10.1016/j.jhydrol.2014.01.068.
- Iqbal M., Al-Hassan M.A., Herdianita N.R., Juliarka B.R.: Determining recharge area in ULUBELU geothermal field, LAMPUNG, Indonesia using stable isotope data. Applied Geochemistry, vol. 156, 2023, 105763. https://doi.org/10.1016/j.apgeochem.2023.105763.
- Fajar R.A., Handayani G., Widodo L.E., Notosiswoyo S., Pamungkas T.C.: Physical model of vertical water movement inside a soil-column apparatus for infiltration study with a two-way orientation approach. Journal of Engineering and Technological Sciences, vol. 51(5), 2019, pp. 615–631. https://doi.org/10.5614/j.eng.technol.sci.2019.51.5.2.
- Brunner P., Cook P.G., Simmons C.T.: Hydrogeologic controls on disconnection between surface water and groundwater. Water Resources Research, vol. 45(1), 2009, W01422. https://doi.org/10.1029/2008WR006953.
- Megahed H.A., Farrag A.E.H.A., Mohamed A.A., D’Antonio P., Scopa A., AbdelRahman M.A.E.: Groundwater recharge potentiality mapping in Wadi Geologic Control of Soil-Infiltration Qena, Eastern Desert Basins of Egypt for sustainable agriculture base using geomatics approaches. Hydrology, vol. 10(12), 2023, 0237. https://doi.org/10.3390/hydrology10120237.
- Tamea S., Butera I.: Stochastic description of infiltration between aquifers. Journal of Hydrology (Amsterdam), vol. 510, 2014, pp. 541–550. https://doi.org/10.1016/j.jhydrol.2013.12.007.
- Bergeson C.B., Martin K.L., Doll B., Cutts B.B.: Soil infiltration rates are underestimated by models in an urban watershed in central North Carolina, USA. Journal of Environmental Management, vol. 313, 2022, 115004. https://doi.org/10.1016/j.jenvman.2022.115004.
- Ramadhan R., Marzuki M., Suryanto W., Sholihun S., Yusnaini H., Muharsyah R., Hanif M.: Trends in rainfall and hydrometeorological disasters in new capital city of Indonesia from long-term satellite-based precipitation products. Remote Sensing Applications: Society and Environment, vol. 28, 2022, 100827. https://doi.org/10.1016/j.rsase.2022.100827.
- Jia N., Yang Z., Xie M., Mitani Y., Tong J.: GIS-based three-dimensional slope stability analysis considering rainfall infiltration. Bulletin of Engineering Geology and the Environment, vol. 74(3), 2015, pp. 919–931. https://doi.org/10.1007/s10064-014-0661-1.
- Balikpapan City Government: Peraturan Daerah Kota Balikpapan Nomor 6 Tahun 2021 Tentang Rencana Pembangunan Jangka Menengah Daerah Tahun 2021–2026 [Local Government Regulation No. 6, 2021 Concerning to the Balikpapan City Development Plan 2021–2026]. https://jdih.balikpapan.go.id/dokumen/456/detail.
- Van Bemmelen R.W.: The Geology of Indonesia. V.F.A. Government Printing Office, The Hague 1949.
- Hidayat S., Umar I.: Peta Geologi Lembar Balikpapan, Kalimantan [Geological Map of the Balikpapan Quadrangle, Kalimantan]. GeoMap. https://geologi.esdm.go.id/geomap/pages/preview/peta-geologi-lembar-balikpapan-kalimantan [access: May 27, 2023].
- Sulistyo T., Abrar A.: Characterization of thin alluvial bed aquifers in Manggar River Balikpapan East Kalimantan Indonesia. Jurnal Teknologi Terpadu (JTT), vol. 5(1), 2017, p. 54. https://doi.org/10.32487/jtt.v5i1.212.
- Pristianto H., Bisri M., Suhartanto E.: Soil textures-based evaluation of Horton and Philip’s infiltration models for equatorial small watersheds. Journal of Ecological Engineering, vol. 25(2), 2024, pp. 103–114. https://doi.org/10.12911/22998993/176319.
- Government of Balikpapan City, Regional Development Planning Agency (BAPEDALDA): Laporan Akhir: Kajian Geologi Untuk Evaluasi Penataan Wilayah Dan Pengembangan Kota Balikpapan [Final Report: Geological Study for the Evaluation of Spatial Planning and Development of Balikpapan City]. Balikpapan 2002. https://drive.google.com/file/d/1RJk52cwM0PC29YsMxDrG7mFr23SjxahA/view?usp=sharing.
- Deisenroth M.P., Faisal A.A., Ong C.S.: Mathematics For Machine Learning. Cambridge University Press, Cambridge, New York 2019.
- Yang Y., Aplin A.C.: A permeability–porosity relationship for mudstones. Marine and Petroleum Geology, vol. 27(8), 2010, pp. 1692–1697. https://doi.org/10.1016/j.marpetgeo.2009.07.001.
- Lewis M.A., Cheney C.S., Ó Dochartaigh B.É.: Guide to Permeability Indices. British Geological Survey, Keyworth 2006. https://nora.nerc.ac.uk/id/eprint/7457/1/CR06160N.pdf [access: September 3, 2025].
- Nunes da Silva I., Spatti D.H., Flauzino R.A., Bartocci Liboni L.H., Franco dos Reis Alves S.: Artificial Neural Networks: A Practical Course. Springer, Cham 2017. https://doi.org/10.1007/978-3-319-43162-8.
- Respati S., Sulistyo T.: The effect of the number of inputs on the spatial interpolation of elevation data using IDW and ANNs. Geodesy and Cartography (Vilnius), vol. 49(1), 2023, pp. 60–65. https://doi.org/10.3846/gac.2023.16591.
- Cheng S., Qiao X., Shi Y., Wang D.: Machine learning for predicting discharge fluctuation of a karst spring in North China. Acta Geophysica, vol. 69(1), 2021, pp. 257–270. https://doi.org/10.1007/s11600-020-00522-0.
- Ruggenthaler R., Meißl G., Geitner C., Leitinger G., Endstrasser N., Schöberl F.: Investigating the impact of initial soil moisture conditions on total infiltration by using an adapted double-ring infiltrometer. Hydrological Sciences Journal, vol. 61(7), 2016, pp. 1263–1279. https://doi.org/10.1080/02626667.2015.1031758.
- Ma J., Zeng R., Yao Y., Meng X., Meng X., Zhang Z., Wang H., Zhao S.: Characterization and quantitative evaluation of preferential infiltration in loess, based on a soil column field test. Catena, vol. 213, 2022, 106164. https://doi.org/10.1016/j.catena.2022.106164.
- Zheng Q., Wang C., Zhu Z.: Research on the prediction of mine water inrush disasters based on multi-factor spatial game reconstruction. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, vol. 10, 2024, 41. https://doi.org/10.1007/s40948-024-00761-1.
- [Pachauri A.K., Pant M.: Landslide hazard mapping based on geological attributes. Engineering Geology, vol. 32(1–2), 1992, pp. 81–100. https://doi.org/10.1016/0013-7952(92)90020-Y.
- Yang M., Zhang Y., Pan X.: Improving the Horton infiltration equation by considering soil moisture variation. Journal of Hydrology (Amsterdam), vol. 586, 2020, 124864. https://doi.org/10.1016/j.jhydrol.2020.124864.
- Carslaw D.C., Ropkins K.: openair – An R package for air quality data analysis. Environmental Modelling & Software, vol. 27–28, 2012, pp. 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008.
- Cahyadi T.A., Syihab Z., Widodo L.E., Notosiswoyo S., Widijanto E.: Analysis of hydraulic conductivity of fractured groundwater flow media using artificial neural network back propagation. Neural Computing and Applications, vol. 33(1), 2021, pp. 159–179. https://doi.org/10.1007/s00521-020-04970-z.
- Berkowitz B.: Characterizing flow and transport in fractured geological media: A review. Advances in Water Resources, vol. 25(8), 2002, pp. 861–884. https://doi.org/10.1016/S0309-1708(02)00042-8.
References
Sulistyo T., Fauzi R.: Soil infiltration rate prediction using machine learning regression model: A case study on Sepinggan River Basin, Balikpapan, Indonesia. Indonesian Journal on Geoscience, vol. 10(3), 2023, pp. 335–347. https://doi.org/10.17014/ijog.10.3.335-347.
Deulkar A.M., Londhe S.N., Jain R.K., Dixit P.R.: Rainfall-runoff modelling using artificial neural networks (ANNs) for Upper Krishna Basin, Maharashtra, India, [in:] Timbadiya P.V., Patel P.L., Singh V.P., Mirajkar A.B. (eds.), Geospatial and Soft Computing Techniques: HYDRO 2021, Lecture Notes in Civil Engineering, vol. 339, Springer, Singapore 2023, pp. 439–450. https://doi.org/10.1007/978-981-99-1901-7_35.
Alfaro I.A., Chavez J.A., Cuestas I.E., Mejía C.J., Landaverde M., Campos S.: Study on infiltration and its relationship with the geology of the Metropolitan Area of San Salvador, El Salvador. Revista Geológica de América Central, no. 63, 2020, pp. 40–57.
Basset C., Abou Najm M., Ghezzehei T., Hao X., Daccache A.: How does soil structure affect water infiltration? A meta-data systematic review. Soil & Tillage Research, vol. 226, 2023, 105577. https://doi.org/10.1016/j.still.2022.105577.
Cleophas F., Isidore F., Musta B., Mohd Ali B.N., Mahali M., Zahari N.Z., Bidin K.: Effect of soil physical properties on soil infiltration rates. Journal of Physics: Conference Series, vol. 2314(1), 2022, 012020. https://doi.org/10.1088/1742-6596/2314/1/012020.
Cui Z., Wu G.L., Huang Z., Liu Y.: Fine roots determine soil infiltration potential than soil water content in semi-arid grassland soils. Journal of Hydrology (Amsterdam), vol. 578, 2019, 124023. https://doi.org/10.1016/j.jhydrol.2019.124023.
Abdelkareem M., Al-Arifi N.: The use of remotely sensed data to reveal geologic, structural, and hydrologic features and predict potential areas of water resources in arid regions. Arabian Journal of Geosciences, vol. 14(704), 2021, pp. 2–15. https://doi.org/10.1007/s12517-021-06942-6.
Beetle-Moorcroft F., Shanafield M., Singha K.: Exploring conceptual models of infiltration and groundwater recharge on an intermittent river: The role of geologic controls. Journal of Hydrology: Regional Studies, vol. 35, 2021, 100814. https://doi.org/10.1016/j.ejrh.2021.100814.
Sulistyo T., Respati S.: The estimation of flood area based on a few selected and weighted parameters: case study of the Nangka River basin, Balikpapan (Indonesia). Journal of the Geographical Institute Jovan Cvijic SASA, vol. 73(2), 2023, pp. 123–137. https://doi.org/10.2298/IJGI2302123S.
Dahan O., Shani Y., Enzel Y., Yechieli Y., Yakirevich A.: Direct measurements of floodwater infiltration into shallow alluvial aquifers. Journal of Hydrology (Amsterdam), vol. 344(3–4), 2007, pp. 157–170. https://doi.org/10.1016/j.jhydrol.2007.06.033.
Shanafield M., Cook P.G.: Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: A review of applied methods. Journal of Hydrology (Amsterdam), vol. 511, 2014, pp. 518–529. https://doi.org/10.1016/j.jhydrol.2014.01.068.
Iqbal M., Al-Hassan M.A., Herdianita N.R., Juliarka B.R.: Determining recharge area in ULUBELU geothermal field, LAMPUNG, Indonesia using stable isotope data. Applied Geochemistry, vol. 156, 2023, 105763. https://doi.org/10.1016/j.apgeochem.2023.105763.
Fajar R.A., Handayani G., Widodo L.E., Notosiswoyo S., Pamungkas T.C.: Physical model of vertical water movement inside a soil-column apparatus for infiltration study with a two-way orientation approach. Journal of Engineering and Technological Sciences, vol. 51(5), 2019, pp. 615–631. https://doi.org/10.5614/j.eng.technol.sci.2019.51.5.2.
Brunner P., Cook P.G., Simmons C.T.: Hydrogeologic controls on disconnection between surface water and groundwater. Water Resources Research, vol. 45(1), 2009, W01422. https://doi.org/10.1029/2008WR006953.
Megahed H.A., Farrag A.E.H.A., Mohamed A.A., D’Antonio P., Scopa A., AbdelRahman M.A.E.: Groundwater recharge potentiality mapping in Wadi Geologic Control of Soil-Infiltration Qena, Eastern Desert Basins of Egypt for sustainable agriculture base using geomatics approaches. Hydrology, vol. 10(12), 2023, 0237. https://doi.org/10.3390/hydrology10120237.
Tamea S., Butera I.: Stochastic description of infiltration between aquifers. Journal of Hydrology (Amsterdam), vol. 510, 2014, pp. 541–550. https://doi.org/10.1016/j.jhydrol.2013.12.007.
Bergeson C.B., Martin K.L., Doll B., Cutts B.B.: Soil infiltration rates are underestimated by models in an urban watershed in central North Carolina, USA. Journal of Environmental Management, vol. 313, 2022, 115004. https://doi.org/10.1016/j.jenvman.2022.115004.
Ramadhan R., Marzuki M., Suryanto W., Sholihun S., Yusnaini H., Muharsyah R., Hanif M.: Trends in rainfall and hydrometeorological disasters in new capital city of Indonesia from long-term satellite-based precipitation products. Remote Sensing Applications: Society and Environment, vol. 28, 2022, 100827. https://doi.org/10.1016/j.rsase.2022.100827.
Jia N., Yang Z., Xie M., Mitani Y., Tong J.: GIS-based three-dimensional slope stability analysis considering rainfall infiltration. Bulletin of Engineering Geology and the Environment, vol. 74(3), 2015, pp. 919–931. https://doi.org/10.1007/s10064-014-0661-1.
Balikpapan City Government: Peraturan Daerah Kota Balikpapan Nomor 6 Tahun 2021 Tentang Rencana Pembangunan Jangka Menengah Daerah Tahun 2021–2026 [Local Government Regulation No. 6, 2021 Concerning to the Balikpapan City Development Plan 2021–2026]. https://jdih.balikpapan.go.id/dokumen/456/detail.
Van Bemmelen R.W.: The Geology of Indonesia. V.F.A. Government Printing Office, The Hague 1949.
Hidayat S., Umar I.: Peta Geologi Lembar Balikpapan, Kalimantan [Geological Map of the Balikpapan Quadrangle, Kalimantan]. GeoMap. https://geologi.esdm.go.id/geomap/pages/preview/peta-geologi-lembar-balikpapan-kalimantan [access: May 27, 2023].
Sulistyo T., Abrar A.: Characterization of thin alluvial bed aquifers in Manggar River Balikpapan East Kalimantan Indonesia. Jurnal Teknologi Terpadu (JTT), vol. 5(1), 2017, p. 54. https://doi.org/10.32487/jtt.v5i1.212.
Pristianto H., Bisri M., Suhartanto E.: Soil textures-based evaluation of Horton and Philip’s infiltration models for equatorial small watersheds. Journal of Ecological Engineering, vol. 25(2), 2024, pp. 103–114. https://doi.org/10.12911/22998993/176319.
Government of Balikpapan City, Regional Development Planning Agency (BAPEDALDA): Laporan Akhir: Kajian Geologi Untuk Evaluasi Penataan Wilayah Dan Pengembangan Kota Balikpapan [Final Report: Geological Study for the Evaluation of Spatial Planning and Development of Balikpapan City]. Balikpapan 2002. https://drive.google.com/file/d/1RJk52cwM0PC29YsMxDrG7mFr23SjxahA/view?usp=sharing.
Deisenroth M.P., Faisal A.A., Ong C.S.: Mathematics For Machine Learning. Cambridge University Press, Cambridge, New York 2019.
Yang Y., Aplin A.C.: A permeability–porosity relationship for mudstones. Marine and Petroleum Geology, vol. 27(8), 2010, pp. 1692–1697. https://doi.org/10.1016/j.marpetgeo.2009.07.001.
Lewis M.A., Cheney C.S., Ó Dochartaigh B.É.: Guide to Permeability Indices. British Geological Survey, Keyworth 2006. https://nora.nerc.ac.uk/id/eprint/7457/1/CR06160N.pdf [access: September 3, 2025].
Nunes da Silva I., Spatti D.H., Flauzino R.A., Bartocci Liboni L.H., Franco dos Reis Alves S.: Artificial Neural Networks: A Practical Course. Springer, Cham 2017. https://doi.org/10.1007/978-3-319-43162-8.
Respati S., Sulistyo T.: The effect of the number of inputs on the spatial interpolation of elevation data using IDW and ANNs. Geodesy and Cartography (Vilnius), vol. 49(1), 2023, pp. 60–65. https://doi.org/10.3846/gac.2023.16591.
Cheng S., Qiao X., Shi Y., Wang D.: Machine learning for predicting discharge fluctuation of a karst spring in North China. Acta Geophysica, vol. 69(1), 2021, pp. 257–270. https://doi.org/10.1007/s11600-020-00522-0.
Ruggenthaler R., Meißl G., Geitner C., Leitinger G., Endstrasser N., Schöberl F.: Investigating the impact of initial soil moisture conditions on total infiltration by using an adapted double-ring infiltrometer. Hydrological Sciences Journal, vol. 61(7), 2016, pp. 1263–1279. https://doi.org/10.1080/02626667.2015.1031758.
Ma J., Zeng R., Yao Y., Meng X., Meng X., Zhang Z., Wang H., Zhao S.: Characterization and quantitative evaluation of preferential infiltration in loess, based on a soil column field test. Catena, vol. 213, 2022, 106164. https://doi.org/10.1016/j.catena.2022.106164.
Zheng Q., Wang C., Zhu Z.: Research on the prediction of mine water inrush disasters based on multi-factor spatial game reconstruction. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, vol. 10, 2024, 41. https://doi.org/10.1007/s40948-024-00761-1.
[Pachauri A.K., Pant M.: Landslide hazard mapping based on geological attributes. Engineering Geology, vol. 32(1–2), 1992, pp. 81–100. https://doi.org/10.1016/0013-7952(92)90020-Y.
Yang M., Zhang Y., Pan X.: Improving the Horton infiltration equation by considering soil moisture variation. Journal of Hydrology (Amsterdam), vol. 586, 2020, 124864. https://doi.org/10.1016/j.jhydrol.2020.124864.
Carslaw D.C., Ropkins K.: openair – An R package for air quality data analysis. Environmental Modelling & Software, vol. 27–28, 2012, pp. 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008.
Cahyadi T.A., Syihab Z., Widodo L.E., Notosiswoyo S., Widijanto E.: Analysis of hydraulic conductivity of fractured groundwater flow media using artificial neural network back propagation. Neural Computing and Applications, vol. 33(1), 2021, pp. 159–179. https://doi.org/10.1007/s00521-020-04970-z.
Berkowitz B.: Characterizing flow and transport in fractured geological media: A review. Advances in Water Resources, vol. 25(8), 2002, pp. 861–884. https://doi.org/10.1016/S0309-1708(02)00042-8.