Date Log

This work is licensed under a Creative Commons Attribution 4.0 International License.
Drivers and Impacts of Climate Change: Comprehensive Review of Natural and Anthropogenic Forcing with GCM-Based Projections
Corresponding Author(s) : Mehmet Özgür Çelik
Geomatics and Environmental Engineering,
Vol. 19 No. 5 (2025): Geomatics and Environmental Engineering
Abstract
Climate change constitutes an escalating global crisis that features significant implications for ecosystems, water resources, agriculture, and industry. Understanding its causes and potential impacts is crucial for formulating effective mitigation and adaptation strategies. This study systematically reviews recent scientific findings and scenario-based climate models to assess both the natural and anthropogenic (human-induced) factors that are driving climate change. It highlights the rising levels of atmospheric carbon, the increasing global temperatures, and the resulting environmental challenges (including extreme weather events, rising sea levels, and biodiversity losses). By drawing on more than 40 regional and global studies, this paper synthesizes results from various GCMs – particularly those that are applied in arid and semi-arid regions (where climate vulnerabilities are most pronounced). The findings revealed disparities in regional vulnerability and highlighted the necessity of selecting accurate GCMs for effective adaptation planning. By synthesizing the existing literature and climate models, this paper aims to establish a comprehensive reference for researchers and policymakers, thus facilitating informed decisionmaking that is geared toward a sustainable future.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Mądzik M., Świąder M.: Carbon footprint assessment for sustainable spatial management in urban settlements: Study of Polish cities. Geomatics and Environmental Engineering, vol. 19(1), 2025, pp. 25–66. https://doi.org/10.7494/geom.2025.19.1.25.
- Barletta C., Capolupo, A., Tarantino E.: Extracting land surface albedo from Landsat 9 data in GEE platform to support climate change analysis. Geomatics and Environmental Engineering, vol. 17(6), 2023, pp. 35–75. https://doi.org/10.7494/geom.2023.17.6.35.
- The Intergovernmental Panel on Climate Change (IPCC): Sixth assessment report. https://www.ipcc.ch/assessment-report/ar6/ [access: 12.10.2024].
- Öztürk T., Gürsoy F.: Geopolitical impact of global climate change on the Arctic Ocean. Akdeniz İİBF Journal, vol. 22(1), 2022, pp. 117–131. https://doi.org/10.25294/auiibfd.1053878.
- Perkins-Kirkpatrick S.E., Gibson P.B.: Changes in regional heatwave characteristics as a function of increasing global temperature. Scientific Reports, vol. 7(1), 2017, 12256. https://doi.org/10.1038/s41598-017-12520-2.
- Henriques M.: Climate change: The 1.5°C threshold explained. BBC, February 8, 2024. https://www.bbc.com/future/article/20231130-climate-crisis-the-15c-global-warming-threshold-explained [access: 23.07.2024].
- Hausfather Z.: Explainer: How scientists estimate ‘climate sensitivity’. Carbon Brief, June 19, 2018. https://www.carbonbrief.org/explainer-how-scientists-estimate-climate-sensitivity/ [access: 23.07.2024].
- Gkinis V., Vinther B.M., Popp T.J., Quistgaard T., Faber A.-K., Holme C.T., Jensen C.-M., Lanzky M., Lütt A.-M., Mandrakis V., Ørum N.-O., Pedersen A.-S., Vaxevani N., Weng Y., Capron E., Dahl-Jensen D., Hörhold M., Jones T.R., Jouzel J., ..., White J.W.C.: A 120,000-year long climate record from a NW-Greenland deep ice core at ultra-high resolution. Sci Data, vol. 8(141), 2021, 141. https://doi.org/10.1038/s41597-021-00916-9.
- Yerli C., Sahin U., Cakmak T., Tufenkci S.: Effects of agricultural applications on CO2 emission and ways to reduce. TURJAF, vol. 7(9), 2019, pp. 1446–1456. https://doi.org/10.24925/turjaf.v7i9.1446-1456.2750.
- Dam M.M.: Sera gazı emisyonlarının makroekonomik değişkenlerle ilişkisi: OECD Ülkeleri için panel veri analizi [The relationship between greenhouse gas emissions and macroeconomic variables: A panel data analysis for OECD countries]. Adnan Menderes University, Aydın, Türkiye [MSc thesis].
- Avand M., Moradi H.R., Ramazanzadeh Lasboyee M.: Spatial prediction of future flood risk: An approach to the effects of climate change. Geosciences, vol. 11(1), 2021, 25. https://doi.org/10.3390/geosciences11010025.
- Mitchell R.J., Liu Y., O’Brien J.J., Elliott K.J., Starr G., Miniat C.F., Hiers J.K.: Future climate and fire interactions in the southeastern region of the United States. Forest Ecology and Management, vol. 327, 2014, pp. 316–326. https://doi.org/10.1016/j.foreco.2013.12.003.
- Huang Y., Jiang Y., Jiang B., Bailey R.T., Masud B., Smerdon B., Faramarzi M.: Modelling impacts of climate change on snow drought, groundwater drought, and their feedback mechanism in a snow-dominated watershed in western Canada. Journal of Hydrology, vol. 636, 2024, 131342. https://doi.org/10.1016/j.jhydrol.2024.131342.
- Kriticos D.J., Sutherst R.W., Brown J.R., Adkins S.W., Maywald G.F.: Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. Journal of Applied Ecology, vol. 40(1), 2003, pp. 111–124. https://doi.org/10.1046/j.1365-2664.2003.00777.x.
- Cárceles Rodríguez B., Durán Zuazo V.H., Franco Tarifa D., Cuadros Tavira S., Sacristan P.C., García-Tejero I.F.: Irrigation alternatives for avocado (Persea americana Mill.) in the Mediterranean subtropical region in the context of climate change: A review. Agriculture, vol. 13(5), 2023, 1049. https://doi.org/10.3390/agriculture13051049.
- Bunn C., Läderach P., Ovalle Rivera O., Kirschke D.: A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, vol. 129(1), 2015, pp. 89–101. https://doi.org/10.1007/s10584-014-1306-x.
- Ovalle-Rivera O., Läderach P., Bunn C., Obersteiner M., Schroth G.: Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PloS one, vol. 10(4), 2015, e0124155. https://doi.org/10.1371/journal.pone.0124155.
- Jones M.W., Abatzoglou J.T., Veraverbeke S., Andela N., Lasslop G., Forkel M., Smith A.J.P., Burton C., Betts R.A., Werf G.R.V.D., Sitch S., Canadell J.G., Santin C., Kolden C., Doerr S.H., Le Quéré C.: Global and regional trends and drivers of fire under climate change. Reviews of Geophysics, vol. 60(3), 2022, e2020RG000726. https://doi.org/10.1029/2020RG000726.
- Keeley J.E., Syphard A.D.: Climate change and future fire regimes: Examples from California. Geosciences, vol. 6(3), 2016, 37. https://doi.org/10.3390/geosciences6030037.
- Bao M., Liu J., Ren H., Liu S., Ren C., Chen C., Liu J.: Research trends in wildland fire prediction amidst climate change: A comprehensive bibliometric analysis. Forests, vol. 15(7), 2024, 1197. https://doi.org/10.3390/f15071197.
- Hurteau M.D., Bradford J.B., Fulé P.Z., Taylor A.H., Martin K.L.: Climate change, fire management, and ecological services in the southwestern US. Forest Ecology and Management, vol. 327, 2014, pp. 280–289. https://doi.org/10.1016/j.foreco.2013.08.007.
- Robles D., Boulanger Y., Pascual J., Danneyrolles V., Bergeron Y., Drobyshev I.: Timber harvesting was the most important factor driving changes in vegetation composition, as compared to climate and fire regime shifts, in the mixedwood temperate forests of Temiscamingue since AD 1830. Landscape Ecology, vol. 40(2), 2025, 26. https://doi.org/10.1007/s10980-025-02043-x.
- Miller J.D., Hutchins M.: The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, vol. 12, 2017, pp. 345–362. https://doi.org/10.1016/j.ejrh.2017.06.006.
- Arnell N.W., Gosling S.N.: The impacts of climate change on river flood risk at the global scale. Climatic Change, vol. 134, 2016, pp. 387–401. https://doi.org/10.1007/s10584-014-1084-5.
- Hurtado-Pidal J., Aguayo M., Link O., Valencia B.G., Francés F.: Setting priorities for floods mitigation through forest restoration: The threshold elevation hypothesis. Journal of Environmental Management, vol. 373, 2025, 123500. https://doi.org/10.1016/j.jenvman.2024.123500.
- Marks D., Baird I.G.: The urban political ecology of worsening flooding in Phnom Penh, Cambodia: Neopatrimonialism, displacement, and uneven harm. International Journal of Disaster Risk Reduction, vol. 118, 2025, 105229. https://doi.org/10.1016/j.ijdrr.2025.105229.
- Rosenzweig B., Montalto F.A., Orton P., Kaatz J., Maher N., Kleyman J., Chen Z., Sanderson E., Adhikari N., McPhearson T., Herreros-Cantis P.: NPCC4: Climate change and New York City’s flood risk. Annals of the New York Academy of Sciences, vol. 1539(1), 2024, pp. 127–184. https://doi.org/10.1111/nyas.15175.
- Xu F., Qu Y., Bento V.A., Song H., Qiu J., Qi J., Wan L., Zhang R., Miao L., Zhang X., Wang Q.: Understanding climate change impacts on drought in China over the 21st century: A multi-model assessment from CMIP6. npj Climate and Atmospheric Science, vol. 7(1), 2024, 32. https://doi.org/10.1038/s41612-024-00578-5.
- Lim W., Park H.C., Park S., Seo J.W., Kim J., Ko D.W.: Modeling tree mortality induced by climate change-driven drought: A case study of Korean fir in the subalpine forests of Jirisan National Park, South Korea. Forests, vol. 16(1), 2025, 84. https://doi.org/10.3390/f16010084.
- Mukherjee S., Mishra A., Trenberth K.E.: Climate change and drought: A perspective on drought indices. Current Climate Change Reports, vol. 4(2), 2018, pp. 145–163. https://doi.org/10.1007/s40641-018-0098-x.
- Barbieri M., Barberio M.D., Banzato F., Billi A., Boschetti T., Franchini S., Gori F., Petitta M.: Climate change and its effect on groundwater quality. Environmental Geochemistry and Health, vol. 45(4), 2023, pp. 1133–1144. https://doi.org/10.1007/s10653-021-01140-5.
- Estrela T., Pérez-Martin M.A., Vargas E.: Impacts of climate change on water resources in Spain. Hydrological Sciences Journal, vol. 57(6), 2012, pp. 1154–1167. https://doi.org/10.1080/02626667.2012.702213.
- Denvir A.: Avocado expansion and the threat of forest loss in Michoacán, Mexico under climate change scenarios. Applied Geography, vol. 151, 2023, 102856. https://doi.org/10.1016/j.apgeog.2022.102856.
- Gurbuz I.B., Ozkan G., Er S.: Exploring kiwi fruit producers’ climate change perceptions. Applied Fruit Science, vol. 66, 2024, pp. 475–483. https://doi.org/10.1007/s10341-023-01021-4.
- Malhi G.S., Kaur M., Kaushik P.: Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, vol. 13(3), 2021, 1318. https://doi.org/10.3390/su13031318.
- Montgomery S.L.: Küresel Enerjiye Yön Veren Güçler: 21. Yüzyıl ve Sonrası [oryg. The Powers That Be: Global Energy for the Twenty-first Century and Beyond, trans. E.G. Senol]. TUBITAK Popular Science Books, Ankara 2014.
- Nguyen T.D., Venkatadri U., Nguyen-Quang T., Diallo C., Pham D.H., Phan H.T., Pham L.K., Nguyen P.C., Adams M.: Stochastic modelling frameworks for dragon fruit supply chains in Vietnam under uncertain factors. Sustainability, vol. 16(6), 2024, 2423. https://doi.org/10.3390/su16062423.
- Özdel M.M., Ustaoğlu B., Cürebal İ.: Modeling of the potential distribution areas suitable for olive (Olea europaea L.) in Türkiye from a climate change perspective. Agriculture, vol. 14(9), 2024, 1629. https://doi.org/10.3390/agriculture14091629.
- Koç D.E., Ustaoğlu B., Biltekin D.: Effect of climate change on the habitat suitability of the relict species Zelkova carpinifolia Spach using ensembled species distribution modelling. Scientific Reports, vol. 14, 2024, 27967. https://doi.org/10.1038/s41598-024-78733-4.
- Dagtekin D., Şahan E.A., Denk T., Köse N., Dalfes H.N.: Past, present and future distributions of Oriental beech (Fagus orientalis) under climate change projections. PloS One, vol. 15(11), 2020, e0242280. https://doi.org/10.1371/journal.pone.0242280.
- de Oliveira Aparecido L.E., Dutra A.F., de Lima R.F., Neto F.D.A., Torsoni G.B., Leite M.R.L.: Climate change scenarios and the dragon fruit climatic zoning in Brazil. Theoretical and Applied Climatology, vol. 149(3), 2022, pp. 897–913. https://doi.org/10.1007/s00704-022-04090-9.
- Goodarzi M.R., Abedi M.J., Niazkar M.: Effects of climate change on streamflow in the Dez Basin of Iran using the IHACRES model based on the CMIP6 model. Journal of Water and Climate Change, vol. 15(6), 2024, 2595–2611. https://doi.org/10.2166/wcc.2024.571.
- HamadAmin B.A., Khwarahm N.R.: Mapping impacts of climate change on narios (SSP). Sustainability, vol. 15(6), 2023, 5469. https://doi.org/10.3390/su15065469.
- Nazarenko L.S., Tausnev N., Russell G.L., Rind D., Miller R.L., Schmidt G.A., Bauer S.E., Kelley M., Ruedy R., Ackerman A.S., Aleinov I., Bauer M., Bleck R., Canuto V., Cesana G., Cheng Y., Clune T.L., Cook B.I., Cruz C.A., ..., Yao M.-S.: Future climate change under SSP emission scenarios with GISS-E2.1. Journal of Advances in Modeling Earth Systems, vol. 14(7), 2022, e2021MS002871. https://doi.org/10.1029/2021MS002871.
- Dehghani A., Mortazavizadeh F., Dehghani A., Bin Rahmat M., Galavi H., Bolonio D., Ng J.L., Rezaverdinejad V., Mirzaei M.: Multi-model assessment of climate change impacts on drought characteristics. Natural Hazards, vol. 121(5), 2025, pp. 6069–6084. https://doi.org/10.1007/s11069-024-07015-z.
- Grüter R., Trachsel T., Laube P., Jaisli I.: Expected global suitability of coffee, cashew and avocado due to climate change. PloS One, vol. 17(1), 2022, e0261976. https://doi.org/10.1371/journal.pone.0261976.
- Vetharaniam I., Timar L., Stanley C. J., Müller K., van den Dijssel C., Clothier B.: Modelling climate change impacts on location suitability and spatial footprint of apple and kiwifruit. Land, vol. 11(10), 2022, 1639. https://doi.org/10.3390/land11101639.
- Mahdavian S., Zeynali B., Salahi B.: Evaluation of the hydrological response of the Kiwi Chai catchment area to future climate changes with the SWAT model. Journal of Environmental Science Studies, vol. 9(3), 2024, pp. 8815–8800.
- Gao B., Yuan S., Guo Y., Zhao Z.: Potential geographical distribution of Actinidia spp. and its predominant indices under climate change. Ecological Informatics, vol. 72, 2022, 101865. https://doi.org/10.1016/j.ecoinf.2022.101865.
- Nazarenko L.S., Schmidt G.A., Miller R.L., Tausnev N., Kelley M., Ruedy R., Russell G.L., Aleinov I., Bauer M., Bauer S., Bleck R., Canuto V., Cheng Y., Clune T.L., Del Genio A.D., Faluvegi G., Hansen J.E., Healy R.J., Kiang N.Y., ..., Zhang J.: Future climate change under RCP emission scenarios with GISS ModelE2. Journal of Advances in Modeling Earth Systems, vol. 7(1), 2015, pp. 244–267. https://doi.org/10.1002/2014MS000403.
- Chou S.C., Lyra A., Mourão C., Dereczynski C., Pilotto I., Gomes J., Bustamante J., Tavares P., Silva A., Rodrigues D., Campos D., Chagas D., Sueiro G., Siqueira G., Marengo J.: Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. American Journal of Climate Change, vol. 3(5), 2014, pp. 512–527. https://doi.org/10.4236/ajcc.2014.35043.
- Hepbilgin B., Ko T.: Possible changes in precipitation in Mount Ida (and vicinity) according to HadGEM2-ES/RegCM4.3.4 global/regional model outputs (2000-2009). Turkish Geographical Review, vol. 69, 2017, pp. 39–46. https://doi.org/10.17211/tcd.309311.
- Park C.K., Byun H.R., Deo R., Lee B.R.: Drought prediction till 2100 under RCP 8.5 climate change scenarios for Korea. Journal of Hydrology, vol. 526, 2015, pp. 221–230. https://doi.org/10.1016/j.jhydrol.2014.10.043.
- Javaherian M., Ebrahimi H., Aminnejad B.: Prediction of changes in climatic parameters using CanESM2 model based on RCP scenarios (case study): Lar dam basin. Ain Shams Engineering Journal, vol. 12(1), 2021, pp. 445–454. https://doi.org/10.1016/j.asej.2020.04.012.
- Liu Y., Li Z., Zhang J., Guo H., Jiang X., Wang S., Zhang Y., Fu Z.: Nutrient release to Qinghai Lake from buffer zone evolution driven by climate change. Journal of Hydrology, vol. 654, 2025, 132833. https://doi.org/10.1016/j.jhydrol.2025.132833.
- Challa V., Renganathan M.: Assessment of climate change impact on meteorological variables of Indravati River Basin using SDSM and CMIP6 models. Environmental Monitoring and Assessment, vol. 197(1), 2025, 22. https://doi.org/10.1007/s10661-024-13467-4.
- Duan R., Huang G., Li Y., Zheng R., Wang G., Xin B., Tian C., Ren J.: Ensemble temperature and precipitation projection for multi-factorial interactive effects of GCMs and SSPs: Application to China. Frontiers in Environmental Science, vol. 9, 2021, 742326. https://doi.org/10.3389/fenvs.2021.742326.
- Tarbuck E.J., Lutgens F.K., Tasa D.. Earth: An Introduction to Physical Geology. Pearson, London 2017.
- Selseng T., Gjertsen A.: What drives sustainable climate change adaptation at the local level? Approaching three knowledge gaps. Sustainable Development, vol. 32(6), 2024, pp. 6504–6519. https://doi.org/10.1002/sd.3043.
- Ai X., Zheng X., Zhang Y., Liu Y., Ou X., Xia C., Liu L.: Climate and land use changes impact the trajectories of ecosystem service bundles in an urban agglomeration: Intricate interaction trends and driver identification under SSP-RCP scenarios. Science of the Total Environment, vol. 944, 2024, 173828. https://doi.org/10.1016/j.scitotenv.2024.173828.
- Aubry T.J., Farquharson J.I., Rowell C.R., Watt S.F., Pinel V., Beckett F., ..., Sykes J.S.: Impact of climate change on volcanic processes: current understanding and future challenges. Bulletin of Volcanology, vol. 84(6), 2022, 58. https://doi.org/10.1007/s00445-022-01562-8.
- Kaiho K.: Role of volcanism and impact heating in mass extinction climate shifts. Scientific Reports, vol. 14(1), 2024, 9946. https://doi.org/10.1038/s41598-024-60467-y.
- Sirocko F., Krebsbach F., Albert J., Britzius S., Schenk F., Förster M.W.: Relation between Central European climate change and Eifel volcanism during the last 130,000 years: The ELSA-23-Tephra-Stack. Quaternary, vol. 7(2), 2024, 21. https://doi.org/10.3390/quat7020021.
- Boreham F., Cashman K., Rust A.: Hazards from lava–river interactions during the 1783–1784 Laki fissure eruption. GSA Bulletin, vol. 132(11–12), 2020, pp. 2651–2668. https://doi.org/10.1130/B35183.1.
- Stevenson D.S., Johnson C.E., Highwood E.J., Gauci V., Collins W.J., Derwent R.G.: Atmospheric impact of the 1783–1784 Laki eruption: Part I Chemistry modelling. Atmospheric Chemistry and Physics, vol. 3(3), 2003, pp. 487–507. https://doi.org/10.5194/acp-3-487-2003.
- Zambri B., Robock A., Mills M. J., Schmidt A.: Modeling the 1783–1784 Laki eruption in Iceland: 2. Climate impacts. Journal of Geophysical Research: Atmospheres, vol. 124(13), 2019, pp. 6770–6790. https://doi.org/10.1029/2018JD029554.
- Gezegenimiz Öne Çıkanlar: Laki Yanardağı patlaması ve yedi yıl süren açlık dönemi [The Laki Volcano eruption and the seven-year hunger period]. Herkese Bilim Teknoloji, June 8, 2017. https://www.herkesebilimteknoloji.com/haberler/surdurulebilirlik/laki-yanardagi-patlamasi-yedi-yil-suren-aclikdonemi [access: 9.10.2024].
- Lovett B.: Web life: Excursion set. Physics World, vol. 27(6), 43. https://doi.org/10.1088/2058-7058/27/06/38.
- Clette F., Svalgaard L., Vaquero J.M., Cliver E.W.: Revisiting the sunspot number: A 400-year perspective on the solar cycle. Space Science Reviews, vol. 186, 2014, pp. 35–103. https://doi.org/10.1007/s11214-014-0074-2.
- Podladchikova T., Van der Linden R., Veronig A.M.: Sunspot number second differences as a precursor of the following 11-year sunspot cycle. The Astrophysical Journal, vol. 850(1), 2017, 81. https://doi.org/10.3847/1538-4357/aa93ef.
- Tarım ve Orman Bakanlığı, Tarım Reformu Genel Müdürlüğü: Türkiye tarımsal kuraklıkla mücadele stratejisi ve eylem planı (2023–2027) [Türkiye’s agricultural drought mitigation strategy and action plan (2023–2027)]. Ankara 2023. https://www.tarimorman.gov.tr/TRGM/Belgeler/0TARIMSAL%20%C3%87EVRE%20VE%20DO%C4%9EAL%20KAYNAKLARI%20KORUMA%20DA%C4%B0RE%20BA%C5%9EKANLI%C4%9EI/Yay%C4%B1nlar%C4%B1m%C4%B1z/Tar%C4%B1msal%20Kurakl%C4%B1kla%20Mu%CC%88cadele.pdf [access: 12.09.2024].
- Hock R., Huss M.: Glaciers and climate change, [in:] Letcher T.M. (ed.), Climate Change: Observed Impacts on Planet Earth, 3rd ed., Elsevier, 2021, pp. 157–176. https://doi.org/10.1016/B978-0-12-821575-3.00009-8.
- Griggs G., Reguero B.G.: Coastal adaptation to climate change and sea-level rise. Water, vol. 13(16), 2021, 2151. https://doi.org/10.3390/w13162151.
- Mohammed K.S., Pata U.K.: Linking the utilization of mineral resources and climate change: a novel approach with frequency domain analysis. Geoscience Frontiers, vol. 15(3), 2024, 101683. https://doi.org/10.1016/j.gsf.2023.101683.
- Ullah A., Bavorova M., Shah A.A., Kandel G.P.: Climate change and rural livelihoods: The potential of extension programs for sustainable development. Sustainable Development, vol. 32(5), 2024, pp. 4992–5004. https://doi.org/10.1002/sd.2951.
- Hobbins M.T., Dai A., Roderick M.L., Farquhar G.D.: Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophysical Research Letters, vol. 35(12), 2008, L12403. https://doi.org/10.1029/2008GL033840.
- NOAA Climate.gov: Scientists uncover future drought patterns and their impacts on global water resources. Climate Program Office, July 2, 2024. https://www.climate.gov/news-features/feed/scientists-uncover-future-drought-patterns-and-their-impacts-global-water?utm_source [access: 13.02.2025].
- Riordon J.: NASA satellites reveal abrupt drop in global freshwater levels. NASA Science, November 15, 2024. https://science.nasa.gov/earth/nasa-satellitesreveal-abrupt-drop-in-global-freshwater-levels/ [access: 13.02.2025].
- Kluger J.: The world’s freshwater resources drop to troubling low. Time, November 19, 2024. https://time.com/7177603/global-freshwater-resources-drop-totroubling-low/ [access: 13.02.2025].
- T.C. Tarım ve Orman Bakanlığı: Değişen iklime uyum çerçevesinde su verimliliği strateji belgesi ve eylem planı 2023–2033 [Water Efficiency Strategy Document and Action Plan 2023-2033 within the Framework of Adaptation to Changing Climate]. Türkiye Official Gazette, 2023. https://suverimliligi.gov.tr/wp-content/uploads/2023/09/SU-VERIMLILIGI-STRATEJI-BELGESI-ve-EYLEM-PLANI_dikey_260923.pdf [access: 17.09.2024].
- T.C. Tarım ve Orman Bakanlığı / TAGEM: TAGEM Tarımsal Sulama Sektör Politika Belgesi 2021-2025 [TAGEM Agricultural Irrigation Sector Policy Document 2021–2025]. 2021. https://www.tarimorman.gov.tr/TAGEM/Belgeler/yayin/Tar%C4%B1msal%20Sulama%20SPB_2021-2025.pdf [access: 17.09.2024].
- Gannon K.: Drylands now make up 40% of land on Earth, excluding Antarctica, study says. The Guardian, December 9, 2024. https://www.theguardian.com/environment/2024/dec/09/drylands-now-make-up-40-of-land-on-earth-excluding-antarctica-study-says [access: 13.02.2025].
- TÜİK (Turkish Statistical Institute): Bitkisel Üretim İstatistikleri – 2023. [Plant Production Statistics – 2023]. December 29, 2023. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2023-49535 [access: 10.05.2024].
- Hansen J.E., Kharecha P., Sato M., Tselioudis G., Kelly J., Bauer S.E., Ruedy R., Jeong E., Jin Q., Rignot E., Velicogna I., Schoeberl M.R., von Schuckmann K., Amponsem J., Cao J., Keskinen A., Li J., Pokela A.: Global warming has accelerated: are the United Nations and the public well-informed? Environment: Science and Policy for Sustainable Development, vol. 67(1), 2025, pp. 6–44. https://doi.org/10.1080/00139157.2025.2434494.
- Bhatti U.A., Bhatti M.A., Tang H., Syam M.S., Awwad E.M., Sharaf M., Ghadi Y.Y.: Global production patterns: Understanding the relationship between greenhouse gas emissions, agriculture greening and climate variability. Environmental Research, vol. 245, 2024, 118049. https://doi.org/10.1016/j.envres.2023.118049.
- EPA (U.S. Environmental Protection Agency): Causes of climate change. https://www.epa.gov/climatechange-science/causes-climate-change? [access: 4.06.2025].
- Coruhlu Y.E., Baser V., Yildiz O.: Object-based geographical data model for determination of the cemetery sites using SWOT and AHP integration. Survey Review, vol. 53(377), 2021, pp. 108–121. https://doi.org/10.1080/00396265.2020.1747843.
- Çoruhlu Y.E., Çelik M.Ö.: Protected area geographical management model from design to implementation for specially protected environment area. Land Use Policy, vol. 122, 2022, 106357. https://doi.org/10.1016/j.landusepol.2022.106357.
- Yaseen Z.M., Halder B., Tan M.L., Kilinc H.C., Ahmadianfar I., Abba S.I., Heddam S., Maulud K.N.A., Demir V., Al-Areeq A.M.: Climate change impact analysis on seasonal drought and landforms using meteorological and remote-sensingderived indices. Acta Geophysica, 2025, pp. 1–33. https://doi.org/10.1007/s11600-025-01585-7.
- Mendyl A., Demir V., Omar N., Orhan O., Weidinger T.: Enhancing solar radiation forecasting in diverse Moroccan climate zones: A comparative study of machine learning models with Sugeno Integral Aggregation. Atmosphere, vol. 15(1), 2024, 103. https://doi.org/10.3390/atmos15010103.
References
Mądzik M., Świąder M.: Carbon footprint assessment for sustainable spatial management in urban settlements: Study of Polish cities. Geomatics and Environmental Engineering, vol. 19(1), 2025, pp. 25–66. https://doi.org/10.7494/geom.2025.19.1.25.
Barletta C., Capolupo, A., Tarantino E.: Extracting land surface albedo from Landsat 9 data in GEE platform to support climate change analysis. Geomatics and Environmental Engineering, vol. 17(6), 2023, pp. 35–75. https://doi.org/10.7494/geom.2023.17.6.35.
The Intergovernmental Panel on Climate Change (IPCC): Sixth assessment report. https://www.ipcc.ch/assessment-report/ar6/ [access: 12.10.2024].
Öztürk T., Gürsoy F.: Geopolitical impact of global climate change on the Arctic Ocean. Akdeniz İİBF Journal, vol. 22(1), 2022, pp. 117–131. https://doi.org/10.25294/auiibfd.1053878.
Perkins-Kirkpatrick S.E., Gibson P.B.: Changes in regional heatwave characteristics as a function of increasing global temperature. Scientific Reports, vol. 7(1), 2017, 12256. https://doi.org/10.1038/s41598-017-12520-2.
Henriques M.: Climate change: The 1.5°C threshold explained. BBC, February 8, 2024. https://www.bbc.com/future/article/20231130-climate-crisis-the-15c-global-warming-threshold-explained [access: 23.07.2024].
Hausfather Z.: Explainer: How scientists estimate ‘climate sensitivity’. Carbon Brief, June 19, 2018. https://www.carbonbrief.org/explainer-how-scientists-estimate-climate-sensitivity/ [access: 23.07.2024].
Gkinis V., Vinther B.M., Popp T.J., Quistgaard T., Faber A.-K., Holme C.T., Jensen C.-M., Lanzky M., Lütt A.-M., Mandrakis V., Ørum N.-O., Pedersen A.-S., Vaxevani N., Weng Y., Capron E., Dahl-Jensen D., Hörhold M., Jones T.R., Jouzel J., ..., White J.W.C.: A 120,000-year long climate record from a NW-Greenland deep ice core at ultra-high resolution. Sci Data, vol. 8(141), 2021, 141. https://doi.org/10.1038/s41597-021-00916-9.
Yerli C., Sahin U., Cakmak T., Tufenkci S.: Effects of agricultural applications on CO2 emission and ways to reduce. TURJAF, vol. 7(9), 2019, pp. 1446–1456. https://doi.org/10.24925/turjaf.v7i9.1446-1456.2750.
Dam M.M.: Sera gazı emisyonlarının makroekonomik değişkenlerle ilişkisi: OECD Ülkeleri için panel veri analizi [The relationship between greenhouse gas emissions and macroeconomic variables: A panel data analysis for OECD countries]. Adnan Menderes University, Aydın, Türkiye [MSc thesis].
Avand M., Moradi H.R., Ramazanzadeh Lasboyee M.: Spatial prediction of future flood risk: An approach to the effects of climate change. Geosciences, vol. 11(1), 2021, 25. https://doi.org/10.3390/geosciences11010025.
Mitchell R.J., Liu Y., O’Brien J.J., Elliott K.J., Starr G., Miniat C.F., Hiers J.K.: Future climate and fire interactions in the southeastern region of the United States. Forest Ecology and Management, vol. 327, 2014, pp. 316–326. https://doi.org/10.1016/j.foreco.2013.12.003.
Huang Y., Jiang Y., Jiang B., Bailey R.T., Masud B., Smerdon B., Faramarzi M.: Modelling impacts of climate change on snow drought, groundwater drought, and their feedback mechanism in a snow-dominated watershed in western Canada. Journal of Hydrology, vol. 636, 2024, 131342. https://doi.org/10.1016/j.jhydrol.2024.131342.
Kriticos D.J., Sutherst R.W., Brown J.R., Adkins S.W., Maywald G.F.: Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. Journal of Applied Ecology, vol. 40(1), 2003, pp. 111–124. https://doi.org/10.1046/j.1365-2664.2003.00777.x.
Cárceles Rodríguez B., Durán Zuazo V.H., Franco Tarifa D., Cuadros Tavira S., Sacristan P.C., García-Tejero I.F.: Irrigation alternatives for avocado (Persea americana Mill.) in the Mediterranean subtropical region in the context of climate change: A review. Agriculture, vol. 13(5), 2023, 1049. https://doi.org/10.3390/agriculture13051049.
Bunn C., Läderach P., Ovalle Rivera O., Kirschke D.: A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, vol. 129(1), 2015, pp. 89–101. https://doi.org/10.1007/s10584-014-1306-x.
Ovalle-Rivera O., Läderach P., Bunn C., Obersteiner M., Schroth G.: Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PloS one, vol. 10(4), 2015, e0124155. https://doi.org/10.1371/journal.pone.0124155.
Jones M.W., Abatzoglou J.T., Veraverbeke S., Andela N., Lasslop G., Forkel M., Smith A.J.P., Burton C., Betts R.A., Werf G.R.V.D., Sitch S., Canadell J.G., Santin C., Kolden C., Doerr S.H., Le Quéré C.: Global and regional trends and drivers of fire under climate change. Reviews of Geophysics, vol. 60(3), 2022, e2020RG000726. https://doi.org/10.1029/2020RG000726.
Keeley J.E., Syphard A.D.: Climate change and future fire regimes: Examples from California. Geosciences, vol. 6(3), 2016, 37. https://doi.org/10.3390/geosciences6030037.
Bao M., Liu J., Ren H., Liu S., Ren C., Chen C., Liu J.: Research trends in wildland fire prediction amidst climate change: A comprehensive bibliometric analysis. Forests, vol. 15(7), 2024, 1197. https://doi.org/10.3390/f15071197.
Hurteau M.D., Bradford J.B., Fulé P.Z., Taylor A.H., Martin K.L.: Climate change, fire management, and ecological services in the southwestern US. Forest Ecology and Management, vol. 327, 2014, pp. 280–289. https://doi.org/10.1016/j.foreco.2013.08.007.
Robles D., Boulanger Y., Pascual J., Danneyrolles V., Bergeron Y., Drobyshev I.: Timber harvesting was the most important factor driving changes in vegetation composition, as compared to climate and fire regime shifts, in the mixedwood temperate forests of Temiscamingue since AD 1830. Landscape Ecology, vol. 40(2), 2025, 26. https://doi.org/10.1007/s10980-025-02043-x.
Miller J.D., Hutchins M.: The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, vol. 12, 2017, pp. 345–362. https://doi.org/10.1016/j.ejrh.2017.06.006.
Arnell N.W., Gosling S.N.: The impacts of climate change on river flood risk at the global scale. Climatic Change, vol. 134, 2016, pp. 387–401. https://doi.org/10.1007/s10584-014-1084-5.
Hurtado-Pidal J., Aguayo M., Link O., Valencia B.G., Francés F.: Setting priorities for floods mitigation through forest restoration: The threshold elevation hypothesis. Journal of Environmental Management, vol. 373, 2025, 123500. https://doi.org/10.1016/j.jenvman.2024.123500.
Marks D., Baird I.G.: The urban political ecology of worsening flooding in Phnom Penh, Cambodia: Neopatrimonialism, displacement, and uneven harm. International Journal of Disaster Risk Reduction, vol. 118, 2025, 105229. https://doi.org/10.1016/j.ijdrr.2025.105229.
Rosenzweig B., Montalto F.A., Orton P., Kaatz J., Maher N., Kleyman J., Chen Z., Sanderson E., Adhikari N., McPhearson T., Herreros-Cantis P.: NPCC4: Climate change and New York City’s flood risk. Annals of the New York Academy of Sciences, vol. 1539(1), 2024, pp. 127–184. https://doi.org/10.1111/nyas.15175.
Xu F., Qu Y., Bento V.A., Song H., Qiu J., Qi J., Wan L., Zhang R., Miao L., Zhang X., Wang Q.: Understanding climate change impacts on drought in China over the 21st century: A multi-model assessment from CMIP6. npj Climate and Atmospheric Science, vol. 7(1), 2024, 32. https://doi.org/10.1038/s41612-024-00578-5.
Lim W., Park H.C., Park S., Seo J.W., Kim J., Ko D.W.: Modeling tree mortality induced by climate change-driven drought: A case study of Korean fir in the subalpine forests of Jirisan National Park, South Korea. Forests, vol. 16(1), 2025, 84. https://doi.org/10.3390/f16010084.
Mukherjee S., Mishra A., Trenberth K.E.: Climate change and drought: A perspective on drought indices. Current Climate Change Reports, vol. 4(2), 2018, pp. 145–163. https://doi.org/10.1007/s40641-018-0098-x.
Barbieri M., Barberio M.D., Banzato F., Billi A., Boschetti T., Franchini S., Gori F., Petitta M.: Climate change and its effect on groundwater quality. Environmental Geochemistry and Health, vol. 45(4), 2023, pp. 1133–1144. https://doi.org/10.1007/s10653-021-01140-5.
Estrela T., Pérez-Martin M.A., Vargas E.: Impacts of climate change on water resources in Spain. Hydrological Sciences Journal, vol. 57(6), 2012, pp. 1154–1167. https://doi.org/10.1080/02626667.2012.702213.
Denvir A.: Avocado expansion and the threat of forest loss in Michoacán, Mexico under climate change scenarios. Applied Geography, vol. 151, 2023, 102856. https://doi.org/10.1016/j.apgeog.2022.102856.
Gurbuz I.B., Ozkan G., Er S.: Exploring kiwi fruit producers’ climate change perceptions. Applied Fruit Science, vol. 66, 2024, pp. 475–483. https://doi.org/10.1007/s10341-023-01021-4.
Malhi G.S., Kaur M., Kaushik P.: Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, vol. 13(3), 2021, 1318. https://doi.org/10.3390/su13031318.
Montgomery S.L.: Küresel Enerjiye Yön Veren Güçler: 21. Yüzyıl ve Sonrası [oryg. The Powers That Be: Global Energy for the Twenty-first Century and Beyond, trans. E.G. Senol]. TUBITAK Popular Science Books, Ankara 2014.
Nguyen T.D., Venkatadri U., Nguyen-Quang T., Diallo C., Pham D.H., Phan H.T., Pham L.K., Nguyen P.C., Adams M.: Stochastic modelling frameworks for dragon fruit supply chains in Vietnam under uncertain factors. Sustainability, vol. 16(6), 2024, 2423. https://doi.org/10.3390/su16062423.
Özdel M.M., Ustaoğlu B., Cürebal İ.: Modeling of the potential distribution areas suitable for olive (Olea europaea L.) in Türkiye from a climate change perspective. Agriculture, vol. 14(9), 2024, 1629. https://doi.org/10.3390/agriculture14091629.
Koç D.E., Ustaoğlu B., Biltekin D.: Effect of climate change on the habitat suitability of the relict species Zelkova carpinifolia Spach using ensembled species distribution modelling. Scientific Reports, vol. 14, 2024, 27967. https://doi.org/10.1038/s41598-024-78733-4.
Dagtekin D., Şahan E.A., Denk T., Köse N., Dalfes H.N.: Past, present and future distributions of Oriental beech (Fagus orientalis) under climate change projections. PloS One, vol. 15(11), 2020, e0242280. https://doi.org/10.1371/journal.pone.0242280.
de Oliveira Aparecido L.E., Dutra A.F., de Lima R.F., Neto F.D.A., Torsoni G.B., Leite M.R.L.: Climate change scenarios and the dragon fruit climatic zoning in Brazil. Theoretical and Applied Climatology, vol. 149(3), 2022, pp. 897–913. https://doi.org/10.1007/s00704-022-04090-9.
Goodarzi M.R., Abedi M.J., Niazkar M.: Effects of climate change on streamflow in the Dez Basin of Iran using the IHACRES model based on the CMIP6 model. Journal of Water and Climate Change, vol. 15(6), 2024, 2595–2611. https://doi.org/10.2166/wcc.2024.571.
HamadAmin B.A., Khwarahm N.R.: Mapping impacts of climate change on narios (SSP). Sustainability, vol. 15(6), 2023, 5469. https://doi.org/10.3390/su15065469.
Nazarenko L.S., Tausnev N., Russell G.L., Rind D., Miller R.L., Schmidt G.A., Bauer S.E., Kelley M., Ruedy R., Ackerman A.S., Aleinov I., Bauer M., Bleck R., Canuto V., Cesana G., Cheng Y., Clune T.L., Cook B.I., Cruz C.A., ..., Yao M.-S.: Future climate change under SSP emission scenarios with GISS-E2.1. Journal of Advances in Modeling Earth Systems, vol. 14(7), 2022, e2021MS002871. https://doi.org/10.1029/2021MS002871.
Dehghani A., Mortazavizadeh F., Dehghani A., Bin Rahmat M., Galavi H., Bolonio D., Ng J.L., Rezaverdinejad V., Mirzaei M.: Multi-model assessment of climate change impacts on drought characteristics. Natural Hazards, vol. 121(5), 2025, pp. 6069–6084. https://doi.org/10.1007/s11069-024-07015-z.
Grüter R., Trachsel T., Laube P., Jaisli I.: Expected global suitability of coffee, cashew and avocado due to climate change. PloS One, vol. 17(1), 2022, e0261976. https://doi.org/10.1371/journal.pone.0261976.
Vetharaniam I., Timar L., Stanley C. J., Müller K., van den Dijssel C., Clothier B.: Modelling climate change impacts on location suitability and spatial footprint of apple and kiwifruit. Land, vol. 11(10), 2022, 1639. https://doi.org/10.3390/land11101639.
Mahdavian S., Zeynali B., Salahi B.: Evaluation of the hydrological response of the Kiwi Chai catchment area to future climate changes with the SWAT model. Journal of Environmental Science Studies, vol. 9(3), 2024, pp. 8815–8800.
Gao B., Yuan S., Guo Y., Zhao Z.: Potential geographical distribution of Actinidia spp. and its predominant indices under climate change. Ecological Informatics, vol. 72, 2022, 101865. https://doi.org/10.1016/j.ecoinf.2022.101865.
Nazarenko L.S., Schmidt G.A., Miller R.L., Tausnev N., Kelley M., Ruedy R., Russell G.L., Aleinov I., Bauer M., Bauer S., Bleck R., Canuto V., Cheng Y., Clune T.L., Del Genio A.D., Faluvegi G., Hansen J.E., Healy R.J., Kiang N.Y., ..., Zhang J.: Future climate change under RCP emission scenarios with GISS ModelE2. Journal of Advances in Modeling Earth Systems, vol. 7(1), 2015, pp. 244–267. https://doi.org/10.1002/2014MS000403.
Chou S.C., Lyra A., Mourão C., Dereczynski C., Pilotto I., Gomes J., Bustamante J., Tavares P., Silva A., Rodrigues D., Campos D., Chagas D., Sueiro G., Siqueira G., Marengo J.: Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. American Journal of Climate Change, vol. 3(5), 2014, pp. 512–527. https://doi.org/10.4236/ajcc.2014.35043.
Hepbilgin B., Ko T.: Possible changes in precipitation in Mount Ida (and vicinity) according to HadGEM2-ES/RegCM4.3.4 global/regional model outputs (2000-2009). Turkish Geographical Review, vol. 69, 2017, pp. 39–46. https://doi.org/10.17211/tcd.309311.
Park C.K., Byun H.R., Deo R., Lee B.R.: Drought prediction till 2100 under RCP 8.5 climate change scenarios for Korea. Journal of Hydrology, vol. 526, 2015, pp. 221–230. https://doi.org/10.1016/j.jhydrol.2014.10.043.
Javaherian M., Ebrahimi H., Aminnejad B.: Prediction of changes in climatic parameters using CanESM2 model based on RCP scenarios (case study): Lar dam basin. Ain Shams Engineering Journal, vol. 12(1), 2021, pp. 445–454. https://doi.org/10.1016/j.asej.2020.04.012.
Liu Y., Li Z., Zhang J., Guo H., Jiang X., Wang S., Zhang Y., Fu Z.: Nutrient release to Qinghai Lake from buffer zone evolution driven by climate change. Journal of Hydrology, vol. 654, 2025, 132833. https://doi.org/10.1016/j.jhydrol.2025.132833.
Challa V., Renganathan M.: Assessment of climate change impact on meteorological variables of Indravati River Basin using SDSM and CMIP6 models. Environmental Monitoring and Assessment, vol. 197(1), 2025, 22. https://doi.org/10.1007/s10661-024-13467-4.
Duan R., Huang G., Li Y., Zheng R., Wang G., Xin B., Tian C., Ren J.: Ensemble temperature and precipitation projection for multi-factorial interactive effects of GCMs and SSPs: Application to China. Frontiers in Environmental Science, vol. 9, 2021, 742326. https://doi.org/10.3389/fenvs.2021.742326.
Tarbuck E.J., Lutgens F.K., Tasa D.. Earth: An Introduction to Physical Geology. Pearson, London 2017.
Selseng T., Gjertsen A.: What drives sustainable climate change adaptation at the local level? Approaching three knowledge gaps. Sustainable Development, vol. 32(6), 2024, pp. 6504–6519. https://doi.org/10.1002/sd.3043.
Ai X., Zheng X., Zhang Y., Liu Y., Ou X., Xia C., Liu L.: Climate and land use changes impact the trajectories of ecosystem service bundles in an urban agglomeration: Intricate interaction trends and driver identification under SSP-RCP scenarios. Science of the Total Environment, vol. 944, 2024, 173828. https://doi.org/10.1016/j.scitotenv.2024.173828.
Aubry T.J., Farquharson J.I., Rowell C.R., Watt S.F., Pinel V., Beckett F., ..., Sykes J.S.: Impact of climate change on volcanic processes: current understanding and future challenges. Bulletin of Volcanology, vol. 84(6), 2022, 58. https://doi.org/10.1007/s00445-022-01562-8.
Kaiho K.: Role of volcanism and impact heating in mass extinction climate shifts. Scientific Reports, vol. 14(1), 2024, 9946. https://doi.org/10.1038/s41598-024-60467-y.
Sirocko F., Krebsbach F., Albert J., Britzius S., Schenk F., Förster M.W.: Relation between Central European climate change and Eifel volcanism during the last 130,000 years: The ELSA-23-Tephra-Stack. Quaternary, vol. 7(2), 2024, 21. https://doi.org/10.3390/quat7020021.
Boreham F., Cashman K., Rust A.: Hazards from lava–river interactions during the 1783–1784 Laki fissure eruption. GSA Bulletin, vol. 132(11–12), 2020, pp. 2651–2668. https://doi.org/10.1130/B35183.1.
Stevenson D.S., Johnson C.E., Highwood E.J., Gauci V., Collins W.J., Derwent R.G.: Atmospheric impact of the 1783–1784 Laki eruption: Part I Chemistry modelling. Atmospheric Chemistry and Physics, vol. 3(3), 2003, pp. 487–507. https://doi.org/10.5194/acp-3-487-2003.
Zambri B., Robock A., Mills M. J., Schmidt A.: Modeling the 1783–1784 Laki eruption in Iceland: 2. Climate impacts. Journal of Geophysical Research: Atmospheres, vol. 124(13), 2019, pp. 6770–6790. https://doi.org/10.1029/2018JD029554.
Gezegenimiz Öne Çıkanlar: Laki Yanardağı patlaması ve yedi yıl süren açlık dönemi [The Laki Volcano eruption and the seven-year hunger period]. Herkese Bilim Teknoloji, June 8, 2017. https://www.herkesebilimteknoloji.com/haberler/surdurulebilirlik/laki-yanardagi-patlamasi-yedi-yil-suren-aclikdonemi [access: 9.10.2024].
Lovett B.: Web life: Excursion set. Physics World, vol. 27(6), 43. https://doi.org/10.1088/2058-7058/27/06/38.
Clette F., Svalgaard L., Vaquero J.M., Cliver E.W.: Revisiting the sunspot number: A 400-year perspective on the solar cycle. Space Science Reviews, vol. 186, 2014, pp. 35–103. https://doi.org/10.1007/s11214-014-0074-2.
Podladchikova T., Van der Linden R., Veronig A.M.: Sunspot number second differences as a precursor of the following 11-year sunspot cycle. The Astrophysical Journal, vol. 850(1), 2017, 81. https://doi.org/10.3847/1538-4357/aa93ef.
Tarım ve Orman Bakanlığı, Tarım Reformu Genel Müdürlüğü: Türkiye tarımsal kuraklıkla mücadele stratejisi ve eylem planı (2023–2027) [Türkiye’s agricultural drought mitigation strategy and action plan (2023–2027)]. Ankara 2023. https://www.tarimorman.gov.tr/TRGM/Belgeler/0TARIMSAL%20%C3%87EVRE%20VE%20DO%C4%9EAL%20KAYNAKLARI%20KORUMA%20DA%C4%B0RE%20BA%C5%9EKANLI%C4%9EI/Yay%C4%B1nlar%C4%B1m%C4%B1z/Tar%C4%B1msal%20Kurakl%C4%B1kla%20Mu%CC%88cadele.pdf [access: 12.09.2024].
Hock R., Huss M.: Glaciers and climate change, [in:] Letcher T.M. (ed.), Climate Change: Observed Impacts on Planet Earth, 3rd ed., Elsevier, 2021, pp. 157–176. https://doi.org/10.1016/B978-0-12-821575-3.00009-8.
Griggs G., Reguero B.G.: Coastal adaptation to climate change and sea-level rise. Water, vol. 13(16), 2021, 2151. https://doi.org/10.3390/w13162151.
Mohammed K.S., Pata U.K.: Linking the utilization of mineral resources and climate change: a novel approach with frequency domain analysis. Geoscience Frontiers, vol. 15(3), 2024, 101683. https://doi.org/10.1016/j.gsf.2023.101683.
Ullah A., Bavorova M., Shah A.A., Kandel G.P.: Climate change and rural livelihoods: The potential of extension programs for sustainable development. Sustainable Development, vol. 32(5), 2024, pp. 4992–5004. https://doi.org/10.1002/sd.2951.
Hobbins M.T., Dai A., Roderick M.L., Farquhar G.D.: Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophysical Research Letters, vol. 35(12), 2008, L12403. https://doi.org/10.1029/2008GL033840.
NOAA Climate.gov: Scientists uncover future drought patterns and their impacts on global water resources. Climate Program Office, July 2, 2024. https://www.climate.gov/news-features/feed/scientists-uncover-future-drought-patterns-and-their-impacts-global-water?utm_source [access: 13.02.2025].
Riordon J.: NASA satellites reveal abrupt drop in global freshwater levels. NASA Science, November 15, 2024. https://science.nasa.gov/earth/nasa-satellitesreveal-abrupt-drop-in-global-freshwater-levels/ [access: 13.02.2025].
Kluger J.: The world’s freshwater resources drop to troubling low. Time, November 19, 2024. https://time.com/7177603/global-freshwater-resources-drop-totroubling-low/ [access: 13.02.2025].
T.C. Tarım ve Orman Bakanlığı: Değişen iklime uyum çerçevesinde su verimliliği strateji belgesi ve eylem planı 2023–2033 [Water Efficiency Strategy Document and Action Plan 2023-2033 within the Framework of Adaptation to Changing Climate]. Türkiye Official Gazette, 2023. https://suverimliligi.gov.tr/wp-content/uploads/2023/09/SU-VERIMLILIGI-STRATEJI-BELGESI-ve-EYLEM-PLANI_dikey_260923.pdf [access: 17.09.2024].
T.C. Tarım ve Orman Bakanlığı / TAGEM: TAGEM Tarımsal Sulama Sektör Politika Belgesi 2021-2025 [TAGEM Agricultural Irrigation Sector Policy Document 2021–2025]. 2021. https://www.tarimorman.gov.tr/TAGEM/Belgeler/yayin/Tar%C4%B1msal%20Sulama%20SPB_2021-2025.pdf [access: 17.09.2024].
Gannon K.: Drylands now make up 40% of land on Earth, excluding Antarctica, study says. The Guardian, December 9, 2024. https://www.theguardian.com/environment/2024/dec/09/drylands-now-make-up-40-of-land-on-earth-excluding-antarctica-study-says [access: 13.02.2025].
TÜİK (Turkish Statistical Institute): Bitkisel Üretim İstatistikleri – 2023. [Plant Production Statistics – 2023]. December 29, 2023. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2023-49535 [access: 10.05.2024].
Hansen J.E., Kharecha P., Sato M., Tselioudis G., Kelly J., Bauer S.E., Ruedy R., Jeong E., Jin Q., Rignot E., Velicogna I., Schoeberl M.R., von Schuckmann K., Amponsem J., Cao J., Keskinen A., Li J., Pokela A.: Global warming has accelerated: are the United Nations and the public well-informed? Environment: Science and Policy for Sustainable Development, vol. 67(1), 2025, pp. 6–44. https://doi.org/10.1080/00139157.2025.2434494.
Bhatti U.A., Bhatti M.A., Tang H., Syam M.S., Awwad E.M., Sharaf M., Ghadi Y.Y.: Global production patterns: Understanding the relationship between greenhouse gas emissions, agriculture greening and climate variability. Environmental Research, vol. 245, 2024, 118049. https://doi.org/10.1016/j.envres.2023.118049.
EPA (U.S. Environmental Protection Agency): Causes of climate change. https://www.epa.gov/climatechange-science/causes-climate-change? [access: 4.06.2025].
Coruhlu Y.E., Baser V., Yildiz O.: Object-based geographical data model for determination of the cemetery sites using SWOT and AHP integration. Survey Review, vol. 53(377), 2021, pp. 108–121. https://doi.org/10.1080/00396265.2020.1747843.
Çoruhlu Y.E., Çelik M.Ö.: Protected area geographical management model from design to implementation for specially protected environment area. Land Use Policy, vol. 122, 2022, 106357. https://doi.org/10.1016/j.landusepol.2022.106357.
Yaseen Z.M., Halder B., Tan M.L., Kilinc H.C., Ahmadianfar I., Abba S.I., Heddam S., Maulud K.N.A., Demir V., Al-Areeq A.M.: Climate change impact analysis on seasonal drought and landforms using meteorological and remote-sensingderived indices. Acta Geophysica, 2025, pp. 1–33. https://doi.org/10.1007/s11600-025-01585-7.
Mendyl A., Demir V., Omar N., Orhan O., Weidinger T.: Enhancing solar radiation forecasting in diverse Moroccan climate zones: A comparative study of machine learning models with Sugeno Integral Aggregation. Atmosphere, vol. 15(1), 2024, 103. https://doi.org/10.3390/atmos15010103.