Date Log

This work is licensed under a Creative Commons Attribution 4.0 International License.
Statistical Analysis of Soil Contamination in Vicinity of Coal-Processing Plant: Implications for Ecosystem Stability
Corresponding Author(s) : Iryna Kochmar
Geomatics and Environmental Engineering,
Vol. 19 No. 6 (2025): Geomatics and Environmental Engineering
Abstract
The extensive generation of waste and intensified geological processes that result from hard coal mining and active operations within mining regions have led to increases in the pollution levels of ecosystems. Most coal-mining wastes contain significant amounts of heavy metals and are, therefore, particularly hazardous to the environment. The soils around waste heaps can be contaminated with various pollutants. This article presents the results of a study of soils that were sampled in the impact zone of the waste heap of the Chervonohradska CPP of the Chervonohrad Mining District. Using statistical methods (including variogram modeling and spatial interpolation), we analyzed the spatial distributions of heavy metals in the affected soil zones. This approach allowed for an enhanced understanding of contamination-dispersion patterns and potential risk areas. The authors collected soil samples from the depth of the biotically active humus-accumulative horizon from the lower tier of the slope of the waste heap at distances of 20 m, 40 m, and 100 m from the spoil tip. We measured the contents of the studied elements in the soil using X-ray fluorescence analysis and assessed the quality of the soil by phytotesting using the Triticum aestivum L. and Lepidium sativum L. test species. It was found that the average concentrations of certain heavy metals in multiple samples exceeded the background values for the region and affected the inhibition of the development and growth of the test objects.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Wang M., Liu R., Chen W., Peng C., Markert B.: Effects of urbanization on heavy metal accumulation in surface soils, Beijing. Journal of Environmental Sciences, vol. 64, 2018, pp. 328–334. https://doi.org/10.1016/j.jes.2016.11.026.
- Bu Q., Li Q., Zhang H., Cao H., Gong W., Zhang X., Ling K., Cao Y.: Concentrations, spatial distributions, and sources of heavy metals in surface soils of the Coal Mining City Wuhai, China. Journal of Chemistry, vol. 2020(1), 2020, 4705954. https://doi.org/10.1155/2020/4705954.
- Rahmonov O., Czajka A., Nádudvari Á., Fajer M., Spórna T., Szypuła B.: Soil and vegetation development on coal-waste dump in southern Poland. International Journal of Environmental Research and Public Health, vol. 19(15), 2022, 9167. https://doi.org/10.3390/ijerph19159167.
- Nádudvari Á., Kozielska B., Abramowicz A., Fabiańska M., Ciesielczuk J., Cabała J., Krzykawski T.: Heavy metal-and organic-matter pollution due to self-heating coal-waste dumps in the Upper Silesian Coal Basin (Poland). Journal of Hazardous Materials, vol. 412, 2021, 125244. https://doi.org/10.1016/j.jhazmat.2021.125244.
- Dong Y., Lu H., Lin H.: Comprehensive study on the spatial distribution of heavy metals and their environmental risks in high-sulfur coal gangue dumps in China. Journal of Environmental Sciences, vol. 136, 2024, pp. 486–497. https://doi.org/10.1016/j.jes.2022.12.023.
- Adhikari S., Marcelo-Silva J., Rajakaruna N., Siebert S.J.: Influence of land use and topography on distribution and bioaccumulation of potentially toxic metals in soil and plant leaves: A case study from Sekhukhuneland, South Africa. Science of the Total Environment, vol. 806(2), 2022, 150659. https://doi.org/10.1016/j.scitotenv.2021.150659.
- Ali H., Khan E., Ilahi I.: Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Hindawi Journal of Chemistry, vol. 2019(1), 2019, 6730305. https://doi.org/10.1155/2019/6730305.
- Shi J., Du P., Luo H., Wu H., Zhang Y., Chen J., Wu M., Xu G., Gao H.: Soil contamination with cadmium and potential risk around various mines in China during 2000–2020. Journal of Environmental Management, vol. 310, 2022, 114509. https://doi.org/10.1016/j.jenvman.2022.114509.
- Chandra K., Proshad R., Islam M., Idris A.M.: An integrated overview of metals contamination, source-specific risks investigation in coal mining vicinity soils. Environmental Geochemistry and Health, vol. 45(11), 2023, pp. 7425–7458. https://doi.org/10.1007/s10653-023-01672-y.
- Petlovanyi M., Sai К., Malashkevych D., Popovych V., Khorolskyi A.: Influence of waste rock dump placement on the geomechanical state of underground mine workings. IOP Conference Series: Earth and Environmental Science, vol. 1156, 2023, 012007. https://doi.org/10.1088/1755-1315/1156/1/012007.
- Starodub Y., Karabyn V., Havrys A., Shainoga I., Samberg A.: Flood risk assessment of Chervonograd mining-industrial district, [in:] Neale C.M.U., Maltese A. (eds.), Remote Sensing for Agriculture, Ecosystems, and Hydrology XX, SPIE Remote Sensing, vol. 10783, 107830P, SPIE, 2018. https://doi.org/10.1117/12.2501928.
- Kochmar I., Karabyn V., Kordan V.: Ecological and geochemical aspects of thermal effects on argillites of the Lviv-Volyn coal basin spoil tips. Scientific Bulletin of National Mining University, no. 3, 2024, pp. 100–107. https://doi.org/10.33271/nvngu/2024-3/100.
- Popovych V., Bosak P., Petlovanyi M., Telak O., Karabyn V., Pinder V.: Environmental safety of phytogenic fields formation on coal mines tailings. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical sciences, vol. 2(446), 2021, pp. 129–136. https://doi.org/10.32014/2021.2518-170X.44.
- Bosak P., Popovych V., Stepova K., Dudyn R.: Environmental impact and toxicological properties of mine dumps of the Lviv-Volyn coal basin. News of the National academy of sciences of the Republic of Kazakhstan. Series of Geology and Technical, vol. 2(440), 2020, pp. 48–54. https://doi.org/10.32014/2020.2518-170X.30.
- Popovych V., Stepova K., Voloshchyshyn A., Bosak P.: Physico-chemical properties of soils in Lviv Volyn coal basin area. E3S Web of Conferences, vol. 105, 2019, 02002. https://doi.org/10.1051/e3sconf/201910502002.
- Bryk D., Hvozdevych O., Kulchytska-Zhyhailo L., Podolskyi M.: Tekhnohenni vuhlevmisni obiekty Chervonohradskoho hirnychopromyslovoho raionu ta deiaki tekhnichni rishennia yikhnoho vykorystannia [Technogenic carbonaceous objects of the Chervonohrad mining and industrial district and some technical solutions for their using]. Heolohiia i Heokhimiia Horiuchykh Kopalyn, no. 4(181), 2019, рр. 45–65.
- Kochmar І., Karabyn V.: Investigation of deportment of chalcophilic heavy metals in the waste rock of Central coal enrichment plant “Chervonohradska” for the purposes of environmental safety of Lviv-Volyn coal basin. Environmental Problems, vol. 7(4), 2022, pp. 169–176. https://doi.org/10.23939/ep2022.04.169.
- Zubov O.R., Zubova L.H., Zubov A.O.: Assessment of the influence of terricons on the ecological conditions of agrarian landscapes. Scientific Bulletin of UNFU, vol. 29(9), 2019, pp. 50–59. https://doi.org/10.36930/40290909.
- Kochmar І., Karabyn V.: Water extracts from waste rocks of the coal industry of Chernvonograd Mining Area (Ukraine) – Problems of environmental safety and civil protection. Ecological Engineering & Environmental Technology, vol. 24(1), 2023, pp. 247–255. https://doi.org/10.12912/27197050/155209.
- Loboichenko V., Nikitina N., Leonova N., Konovalova O., Bondarenko A., Zemlianskyi O., Rashkevich N.: Study of the features of determination of heavy metals in bottom sediments. IOP Conference Series: Earth and Environmental Science, vol. 1348(1), 2024, 012014. https://doi.org/10.1088/1755-1315/1348/1/012014.
- Liu J., Li N., Zhang W., Wei X., Tsang D.C.W., Sun Y., Luo X., Bao Z., Zheng W., Wang J., Xu G., Hou L., Chen Y., Feng Y.: Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks. Environmental Pollution, vol. 248, 2019, pp. 906–915. https://doi.org/10.1016/j.envpol.2019.02.092.
- Boim А.G.F, Melo L.G.A., Moreno F.N., Alleoni L.R.F.: Bioconcentration factors and the risk concentrations of potentially toxic elements in garden soils. Journal of Environmental Management, vol. 170, 2016, pp. 21–27. https://doi.org/10.1016/j.jenvman.2016.01.006.
- Saha L., Bauddh K.: Phytomanagement of iron mine soil by Ricinus communis L. and garden soil. Chemosphere, vol. 313, 2023, 137534. https://doi.org/10.1016/j.chemosphere.2022.137534.
- Ferreira P.A.A., Lopes G., Santana N.A., Marchezan C., Soares C.R.F.S., Guilherme L.R.G.: Soil amendments affect the potential of Gomphrena claussenii for phytoremediation of a Znand Cd-contaminated soil. Chemosphere, vol. 288(2), 2022, 132508. https://doi.org/10.1016/j.chemosphere.2021.132508.
- Bagur-González M.G., Estepa-Molina C., Martín-Peinado F., MoralesRuano S.: Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid) s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. Journal of Soils and Sediments, vol. 11(2), 2011, pp. 281–289. https://doi.org/10.1007/s11368-010-0285-4.
- Ye Z.H., Shu W.S., Zhang Z.Q., Lan C.Y., Wong M.H.: Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere, vol. 47(10), 2002, pp. 1103–1111. https://doi.org/10.1016/S0045-6535(02)00054-1.
- Rizvi A., Zaidi A., Ameen F., Ahmed B., AlKahtani M. D., Khan M. S.: Heavy metal induced stress on wheat: phytotoxicity and microbiological management. The Royal Society of Chemistry, RSC Advances, vol. 10, 2020, pp. 38379–38403. https://doi.org/10.1039/D0RA05610C.
- Frouz J., Zadinová R., Mihaljevič M., Rojík P., Řehoř M.: Effect of accelerated weathering and leaching on the chemistry and phytotoxicity of coal-mine overburden. European Journal of Environmental Sciences, vol. 4(2), 2014, pp. 106–111. https://doi.org/10.14712/23361964.2014.5.
- Radić S., Medunić G., Kuharić Ž., Roje V., Maldini K., Vujčić V., Krivohlavek A.: The effect of hazardous pollutants from coal combustion activity: Phytotoxicity assessment of aqueous soil extracts. Chemosphere, vol. 199, 2018, pp. 191–200. https://doi.org/10.1016/j.chemosphere.2018.02.008.
- Yang F., Li G., Sang N.: The phytotoxicities of agricultural soil samples from a coal gangue stacking area to several maize cultivars (Zea mays L.). Environmental Science and Pollution Research, vol. 28(37), 2021, pp. 52319–52328. https://doi.org/10.1007/s11356-021-14250-5.
- Bożym М.: Assessment of phytotoxicity of landfilled waste and foundry dust based on the direct test. Bulletin of Environmental Contamination and Toxicology, vol. 109(6), 2022, pp. 1095–1105. https://doi.org/10.1007/s00128-022-03603-6.
- Seneviratne M., Rajakaruna N., Rizwan M., Madawala H.M.S.P., Ok Y.S., Vithanage M.: Heavy metal–induced oxidative stress on seed germination and seedling development: A critical review. Environmental Geochemistry and Health, vol. 41(4), 2019, pp. 1813–1831. https://doi.org/10.1007/s10653-017-0005-8.
- Mekki A., Sayadi S.: Study of Heavy Metal Accumulation and Residual Toxicity in Soil Saturated with Phosphate Processing Wastewater. Water, Air, & Soil Pollution, vol. 228(6), 2017, 215. https://doi.org/10.1007/s11270-017-3399-0.
- Barrientos E.Y., Flores C.R., Wrobel K., Wrobel K.: Impact of cadmium and selenium exposure on trace elements, fatty acids and oxidative stress in Lepidium sativum. Journal of the Mexican Chemical Society, vol. 56(1), 2012, pp. 3–9. https://doi.org/10.29356/jmcs.v56i1.267.
- Sahu G.K., Upadhyay S., Sahoo B.B.: Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiology and Molecular Biology of Plants, vol. 18(1), 2012, pp. 21–31. https://doi.org/10.1007/s12298-011-0090-6.
- Lamhamdi M., Bakrim A., Aarab A., Lafont R., Sayah F.: Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. Comptes Rendus Biologies, vol. 334(2), 2011. pp.118–126. https://doi.org/10.1016/j.crvi.2010.12.006.
- Fu Q.-L., Blaney L., Zhou D.-M.: Phytotoxicity and uptake of roxarsone by wheat (Triticum aestivum L.) seedlings. Environmental Pollution, vol. 219, 2016, pp. 210–218. https://doi.org/10.1016/j.envpol.2016.10.041.
- Gunther F.A., de Voogt P. (eds.): Reviews of Environmental Contamination and Toxicology. Volume 238. Springer, Cham 2016. https://doi.org/10.1007/978-3-319-30791-6.
- Pidlisnyuk V., Mamirova A., Pranaw K., Stadnik V., Kuráň P., Trögl J., Shapoval P.: Miscanthus × giganteus phytoremediation of soil contaminated with trace elements as influenced by the presence of plant growth-promoting bacteria. Agronomy, vol. 12(4), 2022, 771. https://doi.org/10.3390/agronomy12040771.
- Nakaz MOZ vid 14.07.2020 N 1595, 2020, Pro zatverdzhennia hihiienichnykh rehlamentiv dopustymoho vmistu khimichnykh rechovyn u grunti [Order of the Ministry of Health of Ukraine No. 1595 dated 14.07.2020, 2020, On the Approval of Hygienic Regulations for the Permissible Content of Chemical Substances in Soil]. https://ips.ligazakon.net/document/view/re35005?an=9 [access: 11.09.2024].
- Fatieiev A.I., Pashchenko Ya.V.: Fonovyi vmist mikroelementiv u gruntakh Ukrainy [Background content of microelements in the soils of Ukraine]. Instytut Hruntoznavstva ta Ahrokhimii im. O.N. Sokolovskoho, Kharkiv 2003.
- Horova A.I., Ryzhenko S.A., Skvortsova T.V.: Obstezhennia ta raionuvannia terytorii za stupenem vplyvu antropohennykh chynnykiv na stan obiektiv dovkillia z vykorystanniam integralnykh tsytohenetychnykh metodiv otsinky [Surveying and zoning of territories by the degree of impact of anthropogenic factors on the condition of environmental objects using integral cytogenetic assessment methods]. NHU, Dnipropetrovsk 2007.
- Baranov V. I.: Ekolohichnyi opys porodnoho vidvalu vuhilnykh shakht TsZF ZAT “Lvivsystemenerho” yak obiekta dlia ozelenennia [Ecological description of the coal mine spoil heap of TsZF ZAT “Lvivsystemenerho” as an object for greening]. Visnyk Lvivskoho Universytetu. Ser. Biolohichna, vyp. 46, 2008, pp. 172–178.
- Kabata-Pendias A., Pendias H.: Trace Elements in Soils and Plants. 3rd ed. CRC Press, Boca Raton, London, New York, Washington 2001.
- Karabyn V., Kochmar I.: Distribution of different forms of manganese in coal mining waste: A case study of the Vizeyska mine, Ukraine. IOP Conference Series: Earth and Environmental Science, vol. 1499(1), 2025, 012045. https://doi.org/10.1088/1755-1315/1499/1/012045.
- Kochmar I., Karabyn V., Karabyn O.: Lead speciation in the technogenesis zone of coal mining sites (case of Vizeyska Mine of Chervonohrad Mining Area, Lviv Region, Ukraine). Petroleum and Coal, vol. 64(2), 2022, pp. 445–454.
- Sutherland C., Chittoo B.S., Samlal A.: The status of scientific development on the application of biosorption of heavy metals at laboratory and pilot-scale: A review. Desalination and Water Treatment, vol. 299, 2023, pp. 13–49. https://doi.org/10.5004/dwt.2023.29699.
- Vassilev S.V., Yossifova M.G., Vassileva C.G.: Mineralogy and geochemistry of Bobov Dol coals, Bulgaria. International Journal of Coal Geology, vol. 26(3–4), 1994, pp. 185–213, https://doi.org/10.1016/0166-5162(94)90010-8.
- Zhao Y.Y., Zheng Y.F., Chen F.: Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China. Chemical Geology, vol. 265(3–4), 2009, pp. 345–362. https://doi.org/10.1016/j.chemgeo.2009.04.015.
- Graf D.L.: Minor element distribution in sedimentary carbonate rocks. Geochimica et Cosmochimica Acta, vol. 26(8), 1962, pp. 849–856, https://doi.org/10.1016/0016-7037(62)90115-1.
- Bożym M., Rybak J.: In vitro chronic phytotoxicity of heavy metals and metalloids to Lepidium sativum (garden cress). Ecotoxicology, vol. 33(1), 2024, pp. 94–103. https://doi.org/10.1007/s10646-024-02729-z.
- Feng X., Wang R., Li T., Cai J., Liu H., Li H., Jiang Y.: Plant functional traits modulate the effects of soil acidification on above-and belowground biomass. Biogeosciences, vol. 21(10), 2024, pp. 2641–2653. https://doi.org/10.5194/bg-21-2641-2024.
- Zhang Q., Wu W., Zhao Y., Tan X., Yang, Y., Zeng, Q., Deng X.: Optimizing potassium fertilization combined with calcium-magnesium phosphate fertilizer mitigates rice cadmium accumulation: A multi-site field trial. Agriculture, vol. 15(10), 2025, 1052. https://doi.org/10.3390/agriculture15101052.
- Rashid A., Schutte B.J., Ulery A., Deyholos M.K., Sanogo S., Lehnhoff E.A., Beck L.: Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health. Agronomy, vol. 13(6), 2023, 1521. https://doi.org/10.3390/agronomy13061521.
- Cakaj A., Drzewiecka K., Hanć A., Lisiak-Zielińska M., Ciszewska L., Drapikowska M.: Plants as effective bioindicators for heavy metal pollution monitoring. Environmental Research, vol. 256, 2024, 119222. https://doi.org/10.1016/j.envres.2024.119222.
- Chudasama T., Dangar K., Gadhvi K., Vyas S., Dudhagara D.: Multivariate statistical analysis of bioavailability of heavy metals and mineral characterization in selected species of coastal flora. Scientific Reports, vol. 14, 2024, 11282. https://doi.org/10.1038/s41598-024-62201-0.
- Kučer L., Krasnoshtan I., Nedilska U., Muliarchuk O., Manzii O., Menderetsky V., Boroday V., Beregniak E., Voitsekhivskyi V., Myronycheva O.: Heavy metals in soil and plants during revegetation of coal mine spoil tips and surrounding territories. Journal of Ecological Engineering, vol. 24(7), 2023, pp. 234–245. https://doi.org/10.12911/22998993/164756.
- Zhu Y., An Y., Li X., Cheng L., Lv S.: Geochemical characteristics and health risks of heavy metals in agricultural soils and crops from a coal mining area in Anhui province, China. Environmental Research, vol. 241, 2024, 117670. https://doi.org/10.1016/j.envres.2023.117670.
- Lu J., Gao L., Wang H.: Contamination characteristics of heavy metals and enrichment capacity of native plants in soils around typical coal mining areas in Gansu, China. Scientific Reports, vol. 14(1), 2024, 29983. https://doi.org/10.1038/s41598-024-81740-0.
- Zhang M., Cheng L., Yue Z., Peng L., Xiao L.: Assessment of heavy metal(oid) pollution and related health risks in agricultural soils surrounding a coal gangue dump from an abandoned coal mine in Chongqing, Southwest China. Scientific Reports, vol. 14(1), 2024, 18667. https://doi.org/10.1038/s41598-024-69072-5.
References
Wang M., Liu R., Chen W., Peng C., Markert B.: Effects of urbanization on heavy metal accumulation in surface soils, Beijing. Journal of Environmental Sciences, vol. 64, 2018, pp. 328–334. https://doi.org/10.1016/j.jes.2016.11.026.
Bu Q., Li Q., Zhang H., Cao H., Gong W., Zhang X., Ling K., Cao Y.: Concentrations, spatial distributions, and sources of heavy metals in surface soils of the Coal Mining City Wuhai, China. Journal of Chemistry, vol. 2020(1), 2020, 4705954. https://doi.org/10.1155/2020/4705954.
Rahmonov O., Czajka A., Nádudvari Á., Fajer M., Spórna T., Szypuła B.: Soil and vegetation development on coal-waste dump in southern Poland. International Journal of Environmental Research and Public Health, vol. 19(15), 2022, 9167. https://doi.org/10.3390/ijerph19159167.
Nádudvari Á., Kozielska B., Abramowicz A., Fabiańska M., Ciesielczuk J., Cabała J., Krzykawski T.: Heavy metal-and organic-matter pollution due to self-heating coal-waste dumps in the Upper Silesian Coal Basin (Poland). Journal of Hazardous Materials, vol. 412, 2021, 125244. https://doi.org/10.1016/j.jhazmat.2021.125244.
Dong Y., Lu H., Lin H.: Comprehensive study on the spatial distribution of heavy metals and their environmental risks in high-sulfur coal gangue dumps in China. Journal of Environmental Sciences, vol. 136, 2024, pp. 486–497. https://doi.org/10.1016/j.jes.2022.12.023.
Adhikari S., Marcelo-Silva J., Rajakaruna N., Siebert S.J.: Influence of land use and topography on distribution and bioaccumulation of potentially toxic metals in soil and plant leaves: A case study from Sekhukhuneland, South Africa. Science of the Total Environment, vol. 806(2), 2022, 150659. https://doi.org/10.1016/j.scitotenv.2021.150659.
Ali H., Khan E., Ilahi I.: Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Hindawi Journal of Chemistry, vol. 2019(1), 2019, 6730305. https://doi.org/10.1155/2019/6730305.
Shi J., Du P., Luo H., Wu H., Zhang Y., Chen J., Wu M., Xu G., Gao H.: Soil contamination with cadmium and potential risk around various mines in China during 2000–2020. Journal of Environmental Management, vol. 310, 2022, 114509. https://doi.org/10.1016/j.jenvman.2022.114509.
Chandra K., Proshad R., Islam M., Idris A.M.: An integrated overview of metals contamination, source-specific risks investigation in coal mining vicinity soils. Environmental Geochemistry and Health, vol. 45(11), 2023, pp. 7425–7458. https://doi.org/10.1007/s10653-023-01672-y.
Petlovanyi M., Sai К., Malashkevych D., Popovych V., Khorolskyi A.: Influence of waste rock dump placement on the geomechanical state of underground mine workings. IOP Conference Series: Earth and Environmental Science, vol. 1156, 2023, 012007. https://doi.org/10.1088/1755-1315/1156/1/012007.
Starodub Y., Karabyn V., Havrys A., Shainoga I., Samberg A.: Flood risk assessment of Chervonograd mining-industrial district, [in:] Neale C.M.U., Maltese A. (eds.), Remote Sensing for Agriculture, Ecosystems, and Hydrology XX, SPIE Remote Sensing, vol. 10783, 107830P, SPIE, 2018. https://doi.org/10.1117/12.2501928.
Kochmar I., Karabyn V., Kordan V.: Ecological and geochemical aspects of thermal effects on argillites of the Lviv-Volyn coal basin spoil tips. Scientific Bulletin of National Mining University, no. 3, 2024, pp. 100–107. https://doi.org/10.33271/nvngu/2024-3/100.
Popovych V., Bosak P., Petlovanyi M., Telak O., Karabyn V., Pinder V.: Environmental safety of phytogenic fields formation on coal mines tailings. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical sciences, vol. 2(446), 2021, pp. 129–136. https://doi.org/10.32014/2021.2518-170X.44.
Bosak P., Popovych V., Stepova K., Dudyn R.: Environmental impact and toxicological properties of mine dumps of the Lviv-Volyn coal basin. News of the National academy of sciences of the Republic of Kazakhstan. Series of Geology and Technical, vol. 2(440), 2020, pp. 48–54. https://doi.org/10.32014/2020.2518-170X.30.
Popovych V., Stepova K., Voloshchyshyn A., Bosak P.: Physico-chemical properties of soils in Lviv Volyn coal basin area. E3S Web of Conferences, vol. 105, 2019, 02002. https://doi.org/10.1051/e3sconf/201910502002.
Bryk D., Hvozdevych O., Kulchytska-Zhyhailo L., Podolskyi M.: Tekhnohenni vuhlevmisni obiekty Chervonohradskoho hirnychopromyslovoho raionu ta deiaki tekhnichni rishennia yikhnoho vykorystannia [Technogenic carbonaceous objects of the Chervonohrad mining and industrial district and some technical solutions for their using]. Heolohiia i Heokhimiia Horiuchykh Kopalyn, no. 4(181), 2019, рр. 45–65.
Kochmar І., Karabyn V.: Investigation of deportment of chalcophilic heavy metals in the waste rock of Central coal enrichment plant “Chervonohradska” for the purposes of environmental safety of Lviv-Volyn coal basin. Environmental Problems, vol. 7(4), 2022, pp. 169–176. https://doi.org/10.23939/ep2022.04.169.
Zubov O.R., Zubova L.H., Zubov A.O.: Assessment of the influence of terricons on the ecological conditions of agrarian landscapes. Scientific Bulletin of UNFU, vol. 29(9), 2019, pp. 50–59. https://doi.org/10.36930/40290909.
Kochmar І., Karabyn V.: Water extracts from waste rocks of the coal industry of Chernvonograd Mining Area (Ukraine) – Problems of environmental safety and civil protection. Ecological Engineering & Environmental Technology, vol. 24(1), 2023, pp. 247–255. https://doi.org/10.12912/27197050/155209.
Loboichenko V., Nikitina N., Leonova N., Konovalova O., Bondarenko A., Zemlianskyi O., Rashkevich N.: Study of the features of determination of heavy metals in bottom sediments. IOP Conference Series: Earth and Environmental Science, vol. 1348(1), 2024, 012014. https://doi.org/10.1088/1755-1315/1348/1/012014.
Liu J., Li N., Zhang W., Wei X., Tsang D.C.W., Sun Y., Luo X., Bao Z., Zheng W., Wang J., Xu G., Hou L., Chen Y., Feng Y.: Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks. Environmental Pollution, vol. 248, 2019, pp. 906–915. https://doi.org/10.1016/j.envpol.2019.02.092.
Boim А.G.F, Melo L.G.A., Moreno F.N., Alleoni L.R.F.: Bioconcentration factors and the risk concentrations of potentially toxic elements in garden soils. Journal of Environmental Management, vol. 170, 2016, pp. 21–27. https://doi.org/10.1016/j.jenvman.2016.01.006.
Saha L., Bauddh K.: Phytomanagement of iron mine soil by Ricinus communis L. and garden soil. Chemosphere, vol. 313, 2023, 137534. https://doi.org/10.1016/j.chemosphere.2022.137534.
Ferreira P.A.A., Lopes G., Santana N.A., Marchezan C., Soares C.R.F.S., Guilherme L.R.G.: Soil amendments affect the potential of Gomphrena claussenii for phytoremediation of a Znand Cd-contaminated soil. Chemosphere, vol. 288(2), 2022, 132508. https://doi.org/10.1016/j.chemosphere.2021.132508.
Bagur-González M.G., Estepa-Molina C., Martín-Peinado F., MoralesRuano S.: Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid) s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. Journal of Soils and Sediments, vol. 11(2), 2011, pp. 281–289. https://doi.org/10.1007/s11368-010-0285-4.
Ye Z.H., Shu W.S., Zhang Z.Q., Lan C.Y., Wong M.H.: Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere, vol. 47(10), 2002, pp. 1103–1111. https://doi.org/10.1016/S0045-6535(02)00054-1.
Rizvi A., Zaidi A., Ameen F., Ahmed B., AlKahtani M. D., Khan M. S.: Heavy metal induced stress on wheat: phytotoxicity and microbiological management. The Royal Society of Chemistry, RSC Advances, vol. 10, 2020, pp. 38379–38403. https://doi.org/10.1039/D0RA05610C.
Frouz J., Zadinová R., Mihaljevič M., Rojík P., Řehoř M.: Effect of accelerated weathering and leaching on the chemistry and phytotoxicity of coal-mine overburden. European Journal of Environmental Sciences, vol. 4(2), 2014, pp. 106–111. https://doi.org/10.14712/23361964.2014.5.
Radić S., Medunić G., Kuharić Ž., Roje V., Maldini K., Vujčić V., Krivohlavek A.: The effect of hazardous pollutants from coal combustion activity: Phytotoxicity assessment of aqueous soil extracts. Chemosphere, vol. 199, 2018, pp. 191–200. https://doi.org/10.1016/j.chemosphere.2018.02.008.
Yang F., Li G., Sang N.: The phytotoxicities of agricultural soil samples from a coal gangue stacking area to several maize cultivars (Zea mays L.). Environmental Science and Pollution Research, vol. 28(37), 2021, pp. 52319–52328. https://doi.org/10.1007/s11356-021-14250-5.
Bożym М.: Assessment of phytotoxicity of landfilled waste and foundry dust based on the direct test. Bulletin of Environmental Contamination and Toxicology, vol. 109(6), 2022, pp. 1095–1105. https://doi.org/10.1007/s00128-022-03603-6.
Seneviratne M., Rajakaruna N., Rizwan M., Madawala H.M.S.P., Ok Y.S., Vithanage M.: Heavy metal–induced oxidative stress on seed germination and seedling development: A critical review. Environmental Geochemistry and Health, vol. 41(4), 2019, pp. 1813–1831. https://doi.org/10.1007/s10653-017-0005-8.
Mekki A., Sayadi S.: Study of Heavy Metal Accumulation and Residual Toxicity in Soil Saturated with Phosphate Processing Wastewater. Water, Air, & Soil Pollution, vol. 228(6), 2017, 215. https://doi.org/10.1007/s11270-017-3399-0.
Barrientos E.Y., Flores C.R., Wrobel K., Wrobel K.: Impact of cadmium and selenium exposure on trace elements, fatty acids and oxidative stress in Lepidium sativum. Journal of the Mexican Chemical Society, vol. 56(1), 2012, pp. 3–9. https://doi.org/10.29356/jmcs.v56i1.267.
Sahu G.K., Upadhyay S., Sahoo B.B.: Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiology and Molecular Biology of Plants, vol. 18(1), 2012, pp. 21–31. https://doi.org/10.1007/s12298-011-0090-6.
Lamhamdi M., Bakrim A., Aarab A., Lafont R., Sayah F.: Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. Comptes Rendus Biologies, vol. 334(2), 2011. pp.118–126. https://doi.org/10.1016/j.crvi.2010.12.006.
Fu Q.-L., Blaney L., Zhou D.-M.: Phytotoxicity and uptake of roxarsone by wheat (Triticum aestivum L.) seedlings. Environmental Pollution, vol. 219, 2016, pp. 210–218. https://doi.org/10.1016/j.envpol.2016.10.041.
Gunther F.A., de Voogt P. (eds.): Reviews of Environmental Contamination and Toxicology. Volume 238. Springer, Cham 2016. https://doi.org/10.1007/978-3-319-30791-6.
Pidlisnyuk V., Mamirova A., Pranaw K., Stadnik V., Kuráň P., Trögl J., Shapoval P.: Miscanthus × giganteus phytoremediation of soil contaminated with trace elements as influenced by the presence of plant growth-promoting bacteria. Agronomy, vol. 12(4), 2022, 771. https://doi.org/10.3390/agronomy12040771.
Nakaz MOZ vid 14.07.2020 N 1595, 2020, Pro zatverdzhennia hihiienichnykh rehlamentiv dopustymoho vmistu khimichnykh rechovyn u grunti [Order of the Ministry of Health of Ukraine No. 1595 dated 14.07.2020, 2020, On the Approval of Hygienic Regulations for the Permissible Content of Chemical Substances in Soil]. https://ips.ligazakon.net/document/view/re35005?an=9 [access: 11.09.2024].
Fatieiev A.I., Pashchenko Ya.V.: Fonovyi vmist mikroelementiv u gruntakh Ukrainy [Background content of microelements in the soils of Ukraine]. Instytut Hruntoznavstva ta Ahrokhimii im. O.N. Sokolovskoho, Kharkiv 2003.
Horova A.I., Ryzhenko S.A., Skvortsova T.V.: Obstezhennia ta raionuvannia terytorii za stupenem vplyvu antropohennykh chynnykiv na stan obiektiv dovkillia z vykorystanniam integralnykh tsytohenetychnykh metodiv otsinky [Surveying and zoning of territories by the degree of impact of anthropogenic factors on the condition of environmental objects using integral cytogenetic assessment methods]. NHU, Dnipropetrovsk 2007.
Baranov V. I.: Ekolohichnyi opys porodnoho vidvalu vuhilnykh shakht TsZF ZAT “Lvivsystemenerho” yak obiekta dlia ozelenennia [Ecological description of the coal mine spoil heap of TsZF ZAT “Lvivsystemenerho” as an object for greening]. Visnyk Lvivskoho Universytetu. Ser. Biolohichna, vyp. 46, 2008, pp. 172–178.
Kabata-Pendias A., Pendias H.: Trace Elements in Soils and Plants. 3rd ed. CRC Press, Boca Raton, London, New York, Washington 2001.
Karabyn V., Kochmar I.: Distribution of different forms of manganese in coal mining waste: A case study of the Vizeyska mine, Ukraine. IOP Conference Series: Earth and Environmental Science, vol. 1499(1), 2025, 012045. https://doi.org/10.1088/1755-1315/1499/1/012045.
Kochmar I., Karabyn V., Karabyn O.: Lead speciation in the technogenesis zone of coal mining sites (case of Vizeyska Mine of Chervonohrad Mining Area, Lviv Region, Ukraine). Petroleum and Coal, vol. 64(2), 2022, pp. 445–454.
Sutherland C., Chittoo B.S., Samlal A.: The status of scientific development on the application of biosorption of heavy metals at laboratory and pilot-scale: A review. Desalination and Water Treatment, vol. 299, 2023, pp. 13–49. https://doi.org/10.5004/dwt.2023.29699.
Vassilev S.V., Yossifova M.G., Vassileva C.G.: Mineralogy and geochemistry of Bobov Dol coals, Bulgaria. International Journal of Coal Geology, vol. 26(3–4), 1994, pp. 185–213, https://doi.org/10.1016/0166-5162(94)90010-8.
Zhao Y.Y., Zheng Y.F., Chen F.: Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China. Chemical Geology, vol. 265(3–4), 2009, pp. 345–362. https://doi.org/10.1016/j.chemgeo.2009.04.015.
Graf D.L.: Minor element distribution in sedimentary carbonate rocks. Geochimica et Cosmochimica Acta, vol. 26(8), 1962, pp. 849–856, https://doi.org/10.1016/0016-7037(62)90115-1.
Bożym M., Rybak J.: In vitro chronic phytotoxicity of heavy metals and metalloids to Lepidium sativum (garden cress). Ecotoxicology, vol. 33(1), 2024, pp. 94–103. https://doi.org/10.1007/s10646-024-02729-z.
Feng X., Wang R., Li T., Cai J., Liu H., Li H., Jiang Y.: Plant functional traits modulate the effects of soil acidification on above-and belowground biomass. Biogeosciences, vol. 21(10), 2024, pp. 2641–2653. https://doi.org/10.5194/bg-21-2641-2024.
Zhang Q., Wu W., Zhao Y., Tan X., Yang, Y., Zeng, Q., Deng X.: Optimizing potassium fertilization combined with calcium-magnesium phosphate fertilizer mitigates rice cadmium accumulation: A multi-site field trial. Agriculture, vol. 15(10), 2025, 1052. https://doi.org/10.3390/agriculture15101052.
Rashid A., Schutte B.J., Ulery A., Deyholos M.K., Sanogo S., Lehnhoff E.A., Beck L.: Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health. Agronomy, vol. 13(6), 2023, 1521. https://doi.org/10.3390/agronomy13061521.
Cakaj A., Drzewiecka K., Hanć A., Lisiak-Zielińska M., Ciszewska L., Drapikowska M.: Plants as effective bioindicators for heavy metal pollution monitoring. Environmental Research, vol. 256, 2024, 119222. https://doi.org/10.1016/j.envres.2024.119222.
Chudasama T., Dangar K., Gadhvi K., Vyas S., Dudhagara D.: Multivariate statistical analysis of bioavailability of heavy metals and mineral characterization in selected species of coastal flora. Scientific Reports, vol. 14, 2024, 11282. https://doi.org/10.1038/s41598-024-62201-0.
Kučer L., Krasnoshtan I., Nedilska U., Muliarchuk O., Manzii O., Menderetsky V., Boroday V., Beregniak E., Voitsekhivskyi V., Myronycheva O.: Heavy metals in soil and plants during revegetation of coal mine spoil tips and surrounding territories. Journal of Ecological Engineering, vol. 24(7), 2023, pp. 234–245. https://doi.org/10.12911/22998993/164756.
Zhu Y., An Y., Li X., Cheng L., Lv S.: Geochemical characteristics and health risks of heavy metals in agricultural soils and crops from a coal mining area in Anhui province, China. Environmental Research, vol. 241, 2024, 117670. https://doi.org/10.1016/j.envres.2023.117670.
Lu J., Gao L., Wang H.: Contamination characteristics of heavy metals and enrichment capacity of native plants in soils around typical coal mining areas in Gansu, China. Scientific Reports, vol. 14(1), 2024, 29983. https://doi.org/10.1038/s41598-024-81740-0.
Zhang M., Cheng L., Yue Z., Peng L., Xiao L.: Assessment of heavy metal(oid) pollution and related health risks in agricultural soils surrounding a coal gangue dump from an abandoned coal mine in Chongqing, Southwest China. Scientific Reports, vol. 14(1), 2024, 18667. https://doi.org/10.1038/s41598-024-69072-5.