Date Log

This work is licensed under a Creative Commons Attribution 4.0 International License.
Integrating Water Indices and Cloud-Based Engine for Change Detection of Aquaculture Areas in Lampung, Indonesia
Corresponding Author(s) : Marindah Yulia Iswari
Geomatics and Environmental Engineering,
Vol. 20 No. 1 (2026): Geomatics and Environmental Engineering
Abstract
Population expansion and climate change have significantly affected the coastal environment in Lampung, Indonesia, mainly through the conversion of mangroves into shrimp-farming ponds. This transformation requires effective monitoring to evaluate its impacts on coastal ecosystems and local livelihoods, as shrimp farming is a major income source in East Lampung. This research improves aquaculture detection and monitoring along the eastern coast of Lampung by integrating several water indices such as the normalized difference water index (NDWI), modified NDWI (MNDWI), water ratio index (WRI), and a newly developed water index (WI), within the cloud-based Google Earth Engine (GEE) platform to capture spatial and temporal variations. Reference data were derived from the 2019 Regional Medium-Term Development Planning Document (RPJMD) and high-resolution Google Earth imagery for accuracy assessment. Results showed that WRI combined with the Otsu’s thresholding method achieved the highest performance, with an overall accuracy (OA) of 93.3% and a kappa coefficient (κ) of 86.7%. Analysis from 2018 to 2022 showed a decline in aquaculture area from 8,407.35 ha to 3,415.50 ha, aligned with statistical data on shrimp production, which decreased from 24,202 t to 8,041 t. These results indicate that the method provides a rapid and effective tool for detecting aquaculture changes, enabling local authorities to strengthen coastal management for sustainable development, ecosystem protection, and livelihood support.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Tarigan T.A., Nurisman N., Simarmata N.: Identification of coastal problem along the east coast of Lampung, Indonesia, [in:] Proceedings of the 7th International Seminar on Ocean and Coastal Engineering. Environmental and Natural Disaster Management (ISOCEEN 2019), SciTePress – Science and Technology Publications, Setúbal 2021, pp. 138–142.
- Bakri S., Hartati F., Kaskoyo H., Febriyano I.G., Dewi B.S.: The fate of mangrove ecosystem sustainability on the shrimp cultivation area in Tulang Bawang District, Lampung, Indonesia. Biodiversitas Journal of Biological Diversity, vol. 24(1), 2023, pp. 379–390. https://doi.org/10.13057/BIODIV/D240145.
- Tobey J., Poespitasari J.H., Wiryawan B.: Good practices for community-based planning and management of shrimp aquaculture in Sumatra, Indonesia. World Bank, NACA, WWF and FAO Consortium Program on Shrimp Farming and the Environment, 2000.
- Masria A.: Bridging coastal challenges: The role of remote sensing and future research. Regional Studies in Marine Science, vol. 73, 2024, 103502. https://doi.org/10.1016/j.rsma.2024.103502.
- Tew Y.L., Sabjan A., Lee L.K., See K.F., Wee S.T.: Comparison of three water indices for tropical aquaculture ponds extraction using Google Earth Engine. Sains Malaysiana, vol. 51(2), 2022, pp. 369–378. http://doi.org/10.17576/jsm-2022-5102-04.
- Subedi A., Acharya T.D.: Small water bodies detection and evaluation using normalized difference water index (NDWI) from Landsat image in Western Terai, Nepal. Bulletin of Nepal Hydrogeological Association, vol. 6, 2021, pp. 89–96.
- Albertini C., Gioia A., Iacobellis V., Manfreda S.: Detection of surface water and floods with multispectral satellites. Remote Sensing, vol. 14(23), 2022, 6005. https://doi.org/10.3390/rs14236005.
- Liu S., Wu Y., Zhang G., Lin N., Liu Z.: Comparing water indices for Landsat data for automated surface water body extraction under complex ground background: A case study in Jilin Province. Remote Sensing, vol. 15(6), 2023, 1678. https://doi.org/10.3390/rs15061678.
- Kwang C., Jnr E.M.O., Amoah A.S.: Comparing of Landsat-8 and Sentinel 2A using water extraction indexes over Volta River. Journal of Geography and Geology, vol. 10(1), 2017, pp. 1–7. https://doi.org/10.5539/jgg.v10n1p1.
- Bhaga T.D., Dube T., Shekede M.D., Shoko C.: Investigating the effectiveness of Landsat-8 OLI and Sentinel-2 MSI satellite data in monitoring the effects of drought on surface water resources in the Western Cape Province, South Africa. Remote Sensing Applications: Society and Environment, vol. 32, 2023, 101037. https://doi.org/10.1016/j.rsase.2023.101037.
- Amani M., Ghorbanian A., Ahmadi S.A., Kakooei M., Moghimi A., Mirmazloumi S.M., Moghaddam S.H.A., Mahdavi S., Ghahremanloo M., Parsian S., Wu Q., Brisco B.: Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, 2020, pp. 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052.
- Tamiminia H., Salehi B., Mahdianpari M., Quackenbush L., Adeli S., Brisco B.: Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 164, 2020, pp. 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001.
- Zhang C., Cui Y., Xie H.: Mapping of land-based aquaculture regions in Southeast Asia and its spatiotemporal change from 1990 to 2020 using time-series remote sensing data. International Journal of Applied Earth Observation and Geoinformation, vol. 121, 2023, 103432. https://doi.org/10.1016/j.jag.2023.103432.
- Sun Z., Luo J., Yang J., Yu Q., Zhang L., Xue K., Lu L.: Nation-scale mapping of coastal aquaculture ponds with Sentinel-1 SAR data using Google Earth Engine. Remote Sensing, vol. 12(18), 2020, 3086. https://doi.org/10.3390/rs12183086.
- Soulard C.E., Walker J.J., Petrakis R.E.: Implementation of a surface water extent model in Cambodia using cloud-based remote sensing. Remote Sensing, vol. 12(6), 2020, 984. https://doi.org/10.3390/rs12060984.
- Yu Z., Di L., Rahman M.S., Tang J.: Fishpond mapping by spectral and spatialbased filtering on Google Earth Engine: A case study in Singra Upazila of Bangladesh. Remote Sensing, vol. 12(17), 2020, 2692. https://doi.org/10.3390/rs12172692.
- McFeeters S.K.: The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, vol. 17(7), 1996, pp. 1425–1432. https://doi.org/10.1080/01431169608948714.
- Xu H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, vol. 27(14), 2006, pp. 3025–3033. https://doi.org/10.1080/01431160600589179.
- Shen L., Li C.: Water body extraction from Landsat ETM+ imagery using AdaBoost algorithm, [in:] 2010 18th International Conference on Geoinformatics, IEEE, 2010, pp. 1–4. https://doi.org/10.1109/GEOINFORMATICS.2010.5567762.
- Fisher A., Flood N., Danaher T.: Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment, vol. 175, 2016, pp. 167–182. https://doi.org/10.1016/j.rse.2015.12.055.
- Acharya T.D., Subedi A., Lee D.H.: Evaluation of water indices for surface water extraction in a Landsat-8 scene of Nepal. Sensors, vol. 18(8), 2018, 2580. https://doi.org/10.3390/s18082580.
- Xu X., Xu S., Jin L., Song E.: Characteristic analysis of Otsu threshold and its applications. Pattern Recognition Letters, vol. 32(7), 2011, pp. 956–961. https://doi.org/10.1016/j.patrec.2011.01.021.
- Rani P.P., Kumar M.S., Sireesha P.G.: Mapping of active and empty aquaponds using spectral indices in coastal region of Guntur District, Andhra Pradesh, India. Journal of Environmental Biology, vol. 42(5), 2021, pp. 1338–1346. http://doi.org/10.22438/jeb/42/5/MRN-1634.
- Szabo S., Gácsi Z., Balazs B.: Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories. Landscape & Environment, vol. 10(3–4), 2016, pp. 194–202. https://doi.org/10.21120/LE/10/3-4/13.
- Guo J., Wang X., Liu B., Liu K., Zhang Y., Wang C.: Remote-sensing extraction of small water bodies on the Loess Plateau. Water, vol. 15(5), 2023, 866. https://doi.org/10.3390/w15050866.
- Deoli V., Kumar D., Kumar M., Kuriqi A., Elbeltagi A.: Water spread mapping of multiple lakes using remote sensing and satellite data. Arabian Journal of Geosciences, vol. 14, 2021, pp. 1–15. https://doi.org/10.1007/s12517-021-08597-9.
- Mukherjee N.R., Samuel C.: Assessment of the temporal variations of surface water bodies in and around Chennai using Landsat imagery. Indian Journal of Science and Technology, vol. 9(18), 2016, pp. 1–7. https://doi.org/10.17485/ijst/2016/v9i18/92089.
- Rahaman M.H., Masroor M., Sajjad H.: Integrating remote sensing derived indices and machine learning algorithms for precise extraction of small surface water bodies in the lower Thoubal River watershed, India. Journal of Cleaner Production, vol. 422, 2023, 138563. https://doi.org/10.1016/j.jclepro.2023.138563.
- Bappeda Lampung: Rencana Pembangunan Jangka Menengah Daerah (RPJMD) Provinsi Lampung 2019–2024 [Regional Development Planning Document]. 2019. https://ppid.lampungprov.go.id/page/RPJMD-Provinsi-Lampung-Tahun-2019-2024 [access: August 9, 2025].
- Peng Y., Sengupta D., Duan Y., Chen C., Tian B.: Accurate mapping of Chinese coastal aquaculture ponds using biophysical parameters based on Sentinel-2 time series images. Marine Pollution Bulletin, vol. 181, 2022, 113901. https://doi.org/10.1016/j.marpolbul.2022.113901.
- Kirchner J.W., Hooper R.P., Kendall C., Neal C., Leavesley G.: Testing and validating environmental models. Science of The Total Environment, vol. 183(1–2), 1996, pp. 33–47. https://doi.org/10.1016/0048-9697(95)04971-1.
- Li W., Dong R., Fu H., Wang J., Yu L., Gong P.: Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping. Remote Sensing of Environment, vol. 237, 2020, 111563. https://doi.org/10.1016/j.rse.2019.111563.
- Rad A.M., Kreitler J., Sadegh M.: Augmented Normalized Difference Water Index for improved surface water monitoring. Environmental Modelling & Software, vol. 140, 2021, 105030. https://doi.org/10.1016/j.envsoft.2021.105030.
- Landis J.R.. Koch G.G.: The measurement of observer agreement for categorial data. Biometrics, vol. 33(1), 1977, pp. 159–174. https://doi.org/10.2307/2529310.
- Utama D., Widigdo B., Kamal M.M., Taryono T.: Site suitability evaluation of Whiteleg shrimp ponds operated using different farming systems in the coastal of East Lampung Regency, Indonesia. Jurnal Riset Akuakultur, vol. 17(4), 2023, pp. 235–248. https://doi.org/10.15578/jra.17.4.2022.235-248.
- Muhari A.: Curah hujan tinggi, 150 KK terdampak banjir di Kabupaten Lampung Timur [Heavy rainfall affects 150 families in East Lampung Regency]. BNPB (Badan Nasional Penanggulangan Bencana), December 31, 2021. https://www.bnpb.go.id/berita/curah-hujan-tinggi-150-kk-terdampak-banjir-di-kabupaten-lampung-timur [access: August 9, 2025].
References
Tarigan T.A., Nurisman N., Simarmata N.: Identification of coastal problem along the east coast of Lampung, Indonesia, [in:] Proceedings of the 7th International Seminar on Ocean and Coastal Engineering. Environmental and Natural Disaster Management (ISOCEEN 2019), SciTePress – Science and Technology Publications, Setúbal 2021, pp. 138–142.
Bakri S., Hartati F., Kaskoyo H., Febriyano I.G., Dewi B.S.: The fate of mangrove ecosystem sustainability on the shrimp cultivation area in Tulang Bawang District, Lampung, Indonesia. Biodiversitas Journal of Biological Diversity, vol. 24(1), 2023, pp. 379–390. https://doi.org/10.13057/BIODIV/D240145.
Tobey J., Poespitasari J.H., Wiryawan B.: Good practices for community-based planning and management of shrimp aquaculture in Sumatra, Indonesia. World Bank, NACA, WWF and FAO Consortium Program on Shrimp Farming and the Environment, 2000.
Masria A.: Bridging coastal challenges: The role of remote sensing and future research. Regional Studies in Marine Science, vol. 73, 2024, 103502. https://doi.org/10.1016/j.rsma.2024.103502.
Tew Y.L., Sabjan A., Lee L.K., See K.F., Wee S.T.: Comparison of three water indices for tropical aquaculture ponds extraction using Google Earth Engine. Sains Malaysiana, vol. 51(2), 2022, pp. 369–378. http://doi.org/10.17576/jsm-2022-5102-04.
Subedi A., Acharya T.D.: Small water bodies detection and evaluation using normalized difference water index (NDWI) from Landsat image in Western Terai, Nepal. Bulletin of Nepal Hydrogeological Association, vol. 6, 2021, pp. 89–96.
Albertini C., Gioia A., Iacobellis V., Manfreda S.: Detection of surface water and floods with multispectral satellites. Remote Sensing, vol. 14(23), 2022, 6005. https://doi.org/10.3390/rs14236005.
Liu S., Wu Y., Zhang G., Lin N., Liu Z.: Comparing water indices for Landsat data for automated surface water body extraction under complex ground background: A case study in Jilin Province. Remote Sensing, vol. 15(6), 2023, 1678. https://doi.org/10.3390/rs15061678.
Kwang C., Jnr E.M.O., Amoah A.S.: Comparing of Landsat-8 and Sentinel 2A using water extraction indexes over Volta River. Journal of Geography and Geology, vol. 10(1), 2017, pp. 1–7. https://doi.org/10.5539/jgg.v10n1p1.
Bhaga T.D., Dube T., Shekede M.D., Shoko C.: Investigating the effectiveness of Landsat-8 OLI and Sentinel-2 MSI satellite data in monitoring the effects of drought on surface water resources in the Western Cape Province, South Africa. Remote Sensing Applications: Society and Environment, vol. 32, 2023, 101037. https://doi.org/10.1016/j.rsase.2023.101037.
Amani M., Ghorbanian A., Ahmadi S.A., Kakooei M., Moghimi A., Mirmazloumi S.M., Moghaddam S.H.A., Mahdavi S., Ghahremanloo M., Parsian S., Wu Q., Brisco B.: Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, 2020, pp. 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052.
Tamiminia H., Salehi B., Mahdianpari M., Quackenbush L., Adeli S., Brisco B.: Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 164, 2020, pp. 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001.
Zhang C., Cui Y., Xie H.: Mapping of land-based aquaculture regions in Southeast Asia and its spatiotemporal change from 1990 to 2020 using time-series remote sensing data. International Journal of Applied Earth Observation and Geoinformation, vol. 121, 2023, 103432. https://doi.org/10.1016/j.jag.2023.103432.
Sun Z., Luo J., Yang J., Yu Q., Zhang L., Xue K., Lu L.: Nation-scale mapping of coastal aquaculture ponds with Sentinel-1 SAR data using Google Earth Engine. Remote Sensing, vol. 12(18), 2020, 3086. https://doi.org/10.3390/rs12183086.
Soulard C.E., Walker J.J., Petrakis R.E.: Implementation of a surface water extent model in Cambodia using cloud-based remote sensing. Remote Sensing, vol. 12(6), 2020, 984. https://doi.org/10.3390/rs12060984.
Yu Z., Di L., Rahman M.S., Tang J.: Fishpond mapping by spectral and spatialbased filtering on Google Earth Engine: A case study in Singra Upazila of Bangladesh. Remote Sensing, vol. 12(17), 2020, 2692. https://doi.org/10.3390/rs12172692.
McFeeters S.K.: The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, vol. 17(7), 1996, pp. 1425–1432. https://doi.org/10.1080/01431169608948714.
Xu H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, vol. 27(14), 2006, pp. 3025–3033. https://doi.org/10.1080/01431160600589179.
Shen L., Li C.: Water body extraction from Landsat ETM+ imagery using AdaBoost algorithm, [in:] 2010 18th International Conference on Geoinformatics, IEEE, 2010, pp. 1–4. https://doi.org/10.1109/GEOINFORMATICS.2010.5567762.
Fisher A., Flood N., Danaher T.: Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment, vol. 175, 2016, pp. 167–182. https://doi.org/10.1016/j.rse.2015.12.055.
Acharya T.D., Subedi A., Lee D.H.: Evaluation of water indices for surface water extraction in a Landsat-8 scene of Nepal. Sensors, vol. 18(8), 2018, 2580. https://doi.org/10.3390/s18082580.
Xu X., Xu S., Jin L., Song E.: Characteristic analysis of Otsu threshold and its applications. Pattern Recognition Letters, vol. 32(7), 2011, pp. 956–961. https://doi.org/10.1016/j.patrec.2011.01.021.
Rani P.P., Kumar M.S., Sireesha P.G.: Mapping of active and empty aquaponds using spectral indices in coastal region of Guntur District, Andhra Pradesh, India. Journal of Environmental Biology, vol. 42(5), 2021, pp. 1338–1346. http://doi.org/10.22438/jeb/42/5/MRN-1634.
Szabo S., Gácsi Z., Balazs B.: Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories. Landscape & Environment, vol. 10(3–4), 2016, pp. 194–202. https://doi.org/10.21120/LE/10/3-4/13.
Guo J., Wang X., Liu B., Liu K., Zhang Y., Wang C.: Remote-sensing extraction of small water bodies on the Loess Plateau. Water, vol. 15(5), 2023, 866. https://doi.org/10.3390/w15050866.
Deoli V., Kumar D., Kumar M., Kuriqi A., Elbeltagi A.: Water spread mapping of multiple lakes using remote sensing and satellite data. Arabian Journal of Geosciences, vol. 14, 2021, pp. 1–15. https://doi.org/10.1007/s12517-021-08597-9.
Mukherjee N.R., Samuel C.: Assessment of the temporal variations of surface water bodies in and around Chennai using Landsat imagery. Indian Journal of Science and Technology, vol. 9(18), 2016, pp. 1–7. https://doi.org/10.17485/ijst/2016/v9i18/92089.
Rahaman M.H., Masroor M., Sajjad H.: Integrating remote sensing derived indices and machine learning algorithms for precise extraction of small surface water bodies in the lower Thoubal River watershed, India. Journal of Cleaner Production, vol. 422, 2023, 138563. https://doi.org/10.1016/j.jclepro.2023.138563.
Bappeda Lampung: Rencana Pembangunan Jangka Menengah Daerah (RPJMD) Provinsi Lampung 2019–2024 [Regional Development Planning Document]. 2019. https://ppid.lampungprov.go.id/page/RPJMD-Provinsi-Lampung-Tahun-2019-2024 [access: August 9, 2025].
Peng Y., Sengupta D., Duan Y., Chen C., Tian B.: Accurate mapping of Chinese coastal aquaculture ponds using biophysical parameters based on Sentinel-2 time series images. Marine Pollution Bulletin, vol. 181, 2022, 113901. https://doi.org/10.1016/j.marpolbul.2022.113901.
Kirchner J.W., Hooper R.P., Kendall C., Neal C., Leavesley G.: Testing and validating environmental models. Science of The Total Environment, vol. 183(1–2), 1996, pp. 33–47. https://doi.org/10.1016/0048-9697(95)04971-1.
Li W., Dong R., Fu H., Wang J., Yu L., Gong P.: Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping. Remote Sensing of Environment, vol. 237, 2020, 111563. https://doi.org/10.1016/j.rse.2019.111563.
Rad A.M., Kreitler J., Sadegh M.: Augmented Normalized Difference Water Index for improved surface water monitoring. Environmental Modelling & Software, vol. 140, 2021, 105030. https://doi.org/10.1016/j.envsoft.2021.105030.
Landis J.R.. Koch G.G.: The measurement of observer agreement for categorial data. Biometrics, vol. 33(1), 1977, pp. 159–174. https://doi.org/10.2307/2529310.
Utama D., Widigdo B., Kamal M.M., Taryono T.: Site suitability evaluation of Whiteleg shrimp ponds operated using different farming systems in the coastal of East Lampung Regency, Indonesia. Jurnal Riset Akuakultur, vol. 17(4), 2023, pp. 235–248. https://doi.org/10.15578/jra.17.4.2022.235-248.
Muhari A.: Curah hujan tinggi, 150 KK terdampak banjir di Kabupaten Lampung Timur [Heavy rainfall affects 150 families in East Lampung Regency]. BNPB (Badan Nasional Penanggulangan Bencana), December 31, 2021. https://www.bnpb.go.id/berita/curah-hujan-tinggi-150-kk-terdampak-banjir-di-kabupaten-lampung-timur [access: August 9, 2025].