Date Log

This work is licensed under a Creative Commons Attribution 4.0 International License.
Climate Change Viewer: User-Friendly Web Tool for Climate Change Tracking in Ukraine
Corresponding Author(s) : Valeriy Osypov
Geomatics and Environmental Engineering,
Vol. 19 No. 5 (2025): Geomatics and Environmental Engineering
Abstract
An effective climate-change-adaptation strategy should be based on userfriendly and reliable climate services. Due to the lack of such services in Ukraine, this study aimed to develop a web tool called “Climate Change Viewer” (https://climate.uhmi.org.ua/) to visualize climate change in Ukraine and support the development of adaptation measures on a regional scale. The tool’s temperature and precipitation data sets include gridded observation-based time series (1946–2020), climate ERA5-Land reanalysis (1981–2020), and high-resolution regional climate projections of the EURO-Cordex initiative (1981–2100). Regular grids of historical data sets and climate projections have been aggregated within the administrative units and main river basins of Ukraine. Climate Change Viewer shows that the observed warming trend across Ukraine remains within the projected range but exceeds the mean of the climate models’ ensemble. The projected precipitation tends to increase in the northwestern and decrease in the southeastern parts of Ukraine through the end of the 21st century. The tool’s user-friendly interface and regional binding can help increase the awareness of national and local authorities, businesses, and the public sector about future risks of warming and water availability. The further development of Climate Change Viewer also considers other environmental and sector-specific parameters.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Wilson L., New S., Daron J., Golding N.: Climate Change Impacts for Ukraine. Met Office, Exeter, Devon, UK 2021.
- European Commission. Directorate-General for Research and Innovation: A European Research and Innovation Roadmap for Climate Services. Publications Office of the European Union, Luxembourg 2015. https://doi.org/10.2777/702151.
- Soloviy V., Dubovich I.: Ecological-social-economic analysis of urban climate governance based on climate plans and reports of Ukraine’s cities of regional significance. Proceedings of the Forestry Academy of Sciences of Ukraine, no. 21, 2020, pp. 157–172. https://doi.org/10.15421/412036.
- Osadchyi V.I.: Climate program of Ukraine as a basis of integral ecological policy of the state in the conditions of climate change. Visnyk of the National Academy of Sciences of Ukraine, no. 6, 2021, pp. 81–84. https://doi.org/10.15407/visn2021.06.081.
- Pavliuk S., Prystupa M., Kovalchuk I., Zozulia A., Riabyka M., Popfalushi D.: Ukrayins’ki hromady ta adaptatsiya do zminy klimatu: Zvit za rezultatamy onlaynopytuvannya [Ukrainian communities and adaptation to climate change report based on the results of an online survey]. 2022. https://enefcities.org.ua/upload/files/Publications/Analytics/zvit_climateadapt.pdf [access: 10.06.2025].
- Verkhovna Rada Ukrainy: Pro skhvalennia Stratehii ekolohichnoi bezpeky ta adaptatsii do zminy klimatu na period do 2030 roku. Rozporyadzhennya Kabinetu Ministriv Ukrainy [Verkhovna Rada of Ukraine: On approval of the Strategy of environmental security and adaptation to climate change for the period up to 2030. Order of the Cabinet of Ministers of Ukraine]. Document no. 1363-2021-р, October 20, 2021. https://zakon.rada.gov.ua/laws/main/l510497.
- Hewitt C.D., Stone R.: Climate services for managing societal risks and opportunities. Climate Services, vol. 23, 2021, 100240. https://doi.org/10.1016/j.cliser.2021.100240.
- Boon E., Body N.S., Biesbroek R.: Developing and testing an evaluation framework for climate services for adaptation. Climate Services, vol. 38, 2025, 100549. https://doi.org/10.1016/j.cliser.2025.100549.
- Calvo L., Christel I., Terrado M., Cucchietti F., Pérez-Montoro M.: Users’cognitive load: A key aspect to successfully communicate visual climate information. Bulletin of the American Meteorological Society, vol. 103(1), 2022, pp. E1–E16. https://doi.org/10.1175/BAMS-D-20-0166.1.
- Goodess C.M., Troccoli A., Acton C., Añel J.A., Bett P.E., Brayshaw D.J., De Felice M., Dorling S.R., Dubus L., Penny L., Percy B., Ranchin T., Thomas C., Trolliet M., Wald L.: Advancing climate services for the European renewable energy sector through capacity building and user engagement. Climate Services, vol. 16, 2019, 100139. https://doi.org/10.1016/j.cliser.2019.100139.
- Palutikof J.P., Street R.B., Gardiner E.P.: Decision support platforms for climate change adaptation: an overview and introduction. Climatic Change, vol. 153, 2019, pp. 459–476. https://doi.org/10.1007/s10584-019-02445-2.
- Hewitson B., Waagsaether K., Wohland J., Kloppers K., Kara T.: Climate information websites: an evolving landscape. WIREs Climate Change, vol. 8(5), 2017, e470. https://doi.org/10.1002/wcc.470.
- Davis M., Lowe R., Steffen S., Doblas-Reyes F., Rodó X.: Barriers to using climate information: Challenges in communicating probabilistic forecasts to decision-makers, [in:] Drake J., Kontar Y., Eichelberger J., Rupp T., Taylor K. (eds.), Communicating Climate-Change and Natural Hazard Risk and Cultivating Resilience, Advances in Natural and Technological Hazards Research, vol. 45, Springer, Cham 2016. https://doi.org/10.1007/978-3-319-20161-0_7.
- Bruno Soares M., Dessai S.: Barriers and enablers to the use of seasonal climate forecasts amongst organizations in Europe. Climatic Change, vol. 137, 2016, pp. 89–103. https://doi.org/10.1007/s10584-016-1671-8.
- Alexander M., Bruno Soares M., Dessai S.: Multi-sector requirements of climate information and impact indicators across Europe: Findings from the SECTEUR European-wide survey – Part 1. Deliverable 2.3 for the “SECTEUR” project: Sector Engagement for the Copernicus Climate Change Service (C3S) – Translating European User Requirements. 2017. https://doi.org/10.13140/RG.2.2.18132.81282.
- European Environment Agency: Overview of climate change adaptation platforms in Europe. European Environment Agency Technical Report 5/2015, Publications Office, Copenhagen 2015. https://doi.org/10.2800/400414.
- Greis M., Ohler T., Henze N., Schmidt A.: Investigating representation alternatives for communicating uncertainty to non-experts, [in:] Kurosu M. (ed.), Human-Computer Interaction: Interaction Technologies, Springer, Cham 2015, pp. 256–263. https://doi.org/10.1007/978-3-319-22723-8_21.
- Kause A., Bruine de Bruin W., Fung F., Taylor A., Lowe J.: Visualizations of projected rainfall change in the United Kingdom: An interview study about user perceptions. Sustainability, vol. 12, 2020, 2955. https://doi.org/10.3390/su12072955.
- Mestre O., Domonkos P., Picard F., Auer I., Robin S., Lebarbier E., Bohm R., Aguilar E., Guijarro J., Vertachnik G., Klancar M., Dubuisson B., Stepanek P.: HOMER: a homogenization software – methods and applications. Idojaras (Quarterly Journal of Hungarian Meteorological Service), vol. 117, 2013, pp. 47–67. https://doi.org/10.3402/polar.v24i1.6254.
- Osadchyi V., Skrynyk Olesya, Palamarchuk L., Skrynyk O., Osypov V., Oshurok D., Sidenko V.: Dataset of gridded time series of monthly air temperature (min, max, mean) and atmospheric precipitation for Ukraine covering the period of 1946–2020. Data in Brief, vol. 44, 2022, 108553. https://doi.org/10.1016/j.dib.2022.108553.
- Aleksandrov Y.I., Bryazgin N.N., Førland E.J.: Seasonal, interannual and longterm variability of precipitation and snow depth in the region of the Barents and Kara seas. Polar Research, vol. 24(1–2), 2005, pp. 69–85. https://doi.org/10.3402/polar.v24i1.6254.
- Central Geophysical Observatory: Archives of meteorological data [dataset], 1976–2020. Kyiv.
- Szentimrey T., Bihari Z.: Manual of Interpolation Software MISHv1.03. Hungarian Meteorological Service, Budapest 2014.
- Copernicus Climate Change Service (C3S): ERA5-Land hourly data from 1950 to present. 2021. https://doi.org/10.24381/cds.e2161bac.
- Jacob D., Petersen J., Eggert B., Alias A., Christensen O.B., Bouwer L.M., Braun A., Colette A., Déqué M., Georgievski G., Georgopoulou E., Gobiet A., Menut L., Nikulin G., Haensler A., Hempelmann N., Jones C., Keuler K., Kovats S., ..., Yiou P.: EURO-CORDEX: New high-resolution climate change projections for European impact research. Regional Environmental Change, vol. 14(2), 2014, pp. 563–578. https://doi.org/10.1007/s10113-013-0499-2.
- Taylor K.E., Stouffer R.J., Meehl G.A.: An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, vol. 93, 2012, pp. 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1.
- Moss R.H., Edmonds J.A., Hibbard K.A., Manning M.R., Rose S.K., van Vuuren D.P., Carter T.R., Emori S., Kainuma M., Kram T., Meehl G.A., Mitchell J.F.B., Nakicenovic N., Riahi K., Smith S.J., Stouffer R.J., Thomson A.M., Weyant J.P., Wilbanks T.J.: The next generation of scenarios for climate change research and assessment. Nature, vol. 463, 2010, pp. 747–756. https://doi.org/10.1038/nature08823.
- Weedon G.P., Balsamo G., Bellouin N., Gomes S., Best M.J., Viterbo P.: The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resources Research, vol. 50(9), 2014, pp. 7505–7514. https://doi.org/10.1002/2014WR015638.
- Vrac M., Noël T., Vautard R.: Bias correction of precipitation through singularity stochastic removal: Because occurrences matter. Journal of Geophysical Research: Atmospheres, vol. 121, 2016, pp. 5237–5258. https://doi.org/10.1002/2015JD024511.
- Landelius T., Dahlgren P., Gollvik S., Jansson A., Olsson E.: A high-resolution regional reanalysis for Europe. Part 2: 2D analysis of surface temperature, precipitation and wind. Quarterly Journal of the Royal Meteorological Society, vol. 142, 2016, pp. 2132–2142. https://doi.org/10.1002/qj.2813.
- Yang W., Andréasson J., Graham P.L., Olsson J., Rosberg J., Wetterhall F.: Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies. Hydrology Research, vol. 41(3–4), 2010, pp. 211–229. https://doi.org/10.2166/nh.2010.004.
- Fischer A.M., Strassmann K.M., Croci-Maspoli M., Hama A.M., Knutti R., Kotlarski S., Schär C., Schnadt Poberaj C., Ban N., Bavay M., Beyerle U., Bresch D.N., Brönnimann S., Burlando P., Casanueva A., Fatichi S., Feigenwinter I., Fischer E.M., Hirschi M., ..., Zubler E.M.: Climate scenarios for Switzerland CH2018 – Approach and implications. Climate Services, vol. 26, 2022, 100288. https://doi.org/10.1016/j.cliser.2022.100288.
- Climate Change Viewer source code. https://github.com/StormInside/ClimateChangeViewer-Frontend-UHMI/tree/localize-end_2023-Herman [access: 30.06.2025].
- Scott E.A., Jr.: SPA Design and Architecture: Understanding Single-Page Web Applications. Black & White, 2015.
- Jánki Z.R., Bilicki V.: Rule-based architectural design pattern recognition with GPT models. Electronics, vol. 12(15), 2023, 3364. https://doi.org/10.3390/electronics12153364.
- Filipova O.: Learning Vue.js 2. Packt Publishing, Birmingham 2016.
- Kowalczyk K., Szandala T.: Enhancing SEO in single-page web applications in contrast with multi-page applications. IEEE Access, vol. 12, 2024, pp. 11597–11614. https://doi.org/10.1109/ACCESS.2024.3355740.
- Edler D., Vetter M.: The simplicity of modern audiovisual web cartography: An example with the open-source JavaScript library leaflet.js. KN – Journal of Cartography and Geographic Information, vol. 69, 2019, pp. 51–62. https://doi.org/10.1007/s42489-019-00006-2.
- Jose D.M., Dwarakish G.S.: Uncertainties in predicting impacts of climate change on hydrology in basin scale: a review. Arabian Journal of Geosciences, vol. 13, 2020, 1037. https://doi.org/10.1007/s12517-020-06071-6.
- Mora C., Frazier A.G., Longman R.S., Dacks R.S., Walton M.M., Tong E.J., Sanchez J.J., Kaiser L.R., Stender Y.O., Anderson J.M., Ambrosino C.M., Fernandez-Silva I., Giuseffi L.M., Giambelluca T.W.: The projected timing of climate departure from recent variability. Nature, vol. 502, 2013, pp. 183–187. https://doi.org/10.1038/nature12540.
- Snizhko S., Didovets I., Bronstert A.: Ukraine’s water security under pressure: Climate change and wartime. Water Security, vol. 23, 2024, 100182. https://doi.org/10.1016/j.wasec.2024.100182.
- Verkhovna Rada Ukrayiny: Pro zatverdzhennya Metodychnykh rekomendatsiy shchodo zmistu rozroblennya rehionalnykh prohram z okhorony dovkillya. Nakaz Ministerstva Okhorony Navkolyshn’oho Seredovyshcha ta Pryrodnykh Resursiv Ukrayiny [Verkhovna Rada of Ukraine: On the approval of the Methodological recommendations on the content of developing regional environmental protection programs. Order Ministry of Environmental Protection and Natural Resources of Ukraine]. Document no. 486, July 11, 2023. https://zakon.rada.gov.ua/rada/main/en/l534130 [access: 10.06.2025].
- Krakovska S., Kryshtop L.: Overall climate change impact assessment for Ukraine. Deutsche Gesellschaft für Internationale Zusammenarbeit, Bonn and Eschborn 2024. https://doi.org/10.13140/RG.2.2.34337.31840.
- Kireitseva H., Tsyhanenko-Dziubenko I., Khomenko S., Lehenchuk R.: Application of multivariate statistical methods for analysis of climate projections. Scientific Journal Metinvest Polytechnic. Series Technical Sciences, no. 3, 2025, pp. 26–33. https://doi.org/10.32782/3041-2080/2025-3-3.
- Jacobs K.L., Street R.B.: The next generation of climate services. Climate Services, vol. 20, 2020, 100199. https://doi.org/10.1016/j.cliser.2020.100199.
- Fleming A., Bohensky E., Dutra L.X.C., Lin B.B., Melbourne-Thomas J., Moore T., Stone-Jovicich S., Tozer C., Clarke J.M., Donegan L., Hopkins M., Merson S., Remenyi T., Swirepik A., Vertigan C.: Perceptions of co-design, codevelopment and co-delivery (Co-3D) as part of the co-production process – Insights for climate services. Climate Services, vol. 30, 2023, pp. 100364. https://doi.org/10.1016/j.cliser.2023.100364.
- Preuschmann S., Hänsler A., Kotova L., Dürk N., Eibner W., Waidhofer C., Haselberger C., Jacob D.: The IMPACT2C web-atlas – Conception, organization and aim of a web-based climate service product. Climate Services, vol. 7, 2017, pp. 115–125. https://doi.org/10.1016/j.cliser.2017.03.005.
References
Wilson L., New S., Daron J., Golding N.: Climate Change Impacts for Ukraine. Met Office, Exeter, Devon, UK 2021.
European Commission. Directorate-General for Research and Innovation: A European Research and Innovation Roadmap for Climate Services. Publications Office of the European Union, Luxembourg 2015. https://doi.org/10.2777/702151.
Soloviy V., Dubovich I.: Ecological-social-economic analysis of urban climate governance based on climate plans and reports of Ukraine’s cities of regional significance. Proceedings of the Forestry Academy of Sciences of Ukraine, no. 21, 2020, pp. 157–172. https://doi.org/10.15421/412036.
Osadchyi V.I.: Climate program of Ukraine as a basis of integral ecological policy of the state in the conditions of climate change. Visnyk of the National Academy of Sciences of Ukraine, no. 6, 2021, pp. 81–84. https://doi.org/10.15407/visn2021.06.081.
Pavliuk S., Prystupa M., Kovalchuk I., Zozulia A., Riabyka M., Popfalushi D.: Ukrayins’ki hromady ta adaptatsiya do zminy klimatu: Zvit za rezultatamy onlaynopytuvannya [Ukrainian communities and adaptation to climate change report based on the results of an online survey]. 2022. https://enefcities.org.ua/upload/files/Publications/Analytics/zvit_climateadapt.pdf [access: 10.06.2025].
Verkhovna Rada Ukrainy: Pro skhvalennia Stratehii ekolohichnoi bezpeky ta adaptatsii do zminy klimatu na period do 2030 roku. Rozporyadzhennya Kabinetu Ministriv Ukrainy [Verkhovna Rada of Ukraine: On approval of the Strategy of environmental security and adaptation to climate change for the period up to 2030. Order of the Cabinet of Ministers of Ukraine]. Document no. 1363-2021-р, October 20, 2021. https://zakon.rada.gov.ua/laws/main/l510497.
Hewitt C.D., Stone R.: Climate services for managing societal risks and opportunities. Climate Services, vol. 23, 2021, 100240. https://doi.org/10.1016/j.cliser.2021.100240.
Boon E., Body N.S., Biesbroek R.: Developing and testing an evaluation framework for climate services for adaptation. Climate Services, vol. 38, 2025, 100549. https://doi.org/10.1016/j.cliser.2025.100549.
Calvo L., Christel I., Terrado M., Cucchietti F., Pérez-Montoro M.: Users’cognitive load: A key aspect to successfully communicate visual climate information. Bulletin of the American Meteorological Society, vol. 103(1), 2022, pp. E1–E16. https://doi.org/10.1175/BAMS-D-20-0166.1.
Goodess C.M., Troccoli A., Acton C., Añel J.A., Bett P.E., Brayshaw D.J., De Felice M., Dorling S.R., Dubus L., Penny L., Percy B., Ranchin T., Thomas C., Trolliet M., Wald L.: Advancing climate services for the European renewable energy sector through capacity building and user engagement. Climate Services, vol. 16, 2019, 100139. https://doi.org/10.1016/j.cliser.2019.100139.
Palutikof J.P., Street R.B., Gardiner E.P.: Decision support platforms for climate change adaptation: an overview and introduction. Climatic Change, vol. 153, 2019, pp. 459–476. https://doi.org/10.1007/s10584-019-02445-2.
Hewitson B., Waagsaether K., Wohland J., Kloppers K., Kara T.: Climate information websites: an evolving landscape. WIREs Climate Change, vol. 8(5), 2017, e470. https://doi.org/10.1002/wcc.470.
Davis M., Lowe R., Steffen S., Doblas-Reyes F., Rodó X.: Barriers to using climate information: Challenges in communicating probabilistic forecasts to decision-makers, [in:] Drake J., Kontar Y., Eichelberger J., Rupp T., Taylor K. (eds.), Communicating Climate-Change and Natural Hazard Risk and Cultivating Resilience, Advances in Natural and Technological Hazards Research, vol. 45, Springer, Cham 2016. https://doi.org/10.1007/978-3-319-20161-0_7.
Bruno Soares M., Dessai S.: Barriers and enablers to the use of seasonal climate forecasts amongst organizations in Europe. Climatic Change, vol. 137, 2016, pp. 89–103. https://doi.org/10.1007/s10584-016-1671-8.
Alexander M., Bruno Soares M., Dessai S.: Multi-sector requirements of climate information and impact indicators across Europe: Findings from the SECTEUR European-wide survey – Part 1. Deliverable 2.3 for the “SECTEUR” project: Sector Engagement for the Copernicus Climate Change Service (C3S) – Translating European User Requirements. 2017. https://doi.org/10.13140/RG.2.2.18132.81282.
European Environment Agency: Overview of climate change adaptation platforms in Europe. European Environment Agency Technical Report 5/2015, Publications Office, Copenhagen 2015. https://doi.org/10.2800/400414.
Greis M., Ohler T., Henze N., Schmidt A.: Investigating representation alternatives for communicating uncertainty to non-experts, [in:] Kurosu M. (ed.), Human-Computer Interaction: Interaction Technologies, Springer, Cham 2015, pp. 256–263. https://doi.org/10.1007/978-3-319-22723-8_21.
Kause A., Bruine de Bruin W., Fung F., Taylor A., Lowe J.: Visualizations of projected rainfall change in the United Kingdom: An interview study about user perceptions. Sustainability, vol. 12, 2020, 2955. https://doi.org/10.3390/su12072955.
Mestre O., Domonkos P., Picard F., Auer I., Robin S., Lebarbier E., Bohm R., Aguilar E., Guijarro J., Vertachnik G., Klancar M., Dubuisson B., Stepanek P.: HOMER: a homogenization software – methods and applications. Idojaras (Quarterly Journal of Hungarian Meteorological Service), vol. 117, 2013, pp. 47–67. https://doi.org/10.3402/polar.v24i1.6254.
Osadchyi V., Skrynyk Olesya, Palamarchuk L., Skrynyk O., Osypov V., Oshurok D., Sidenko V.: Dataset of gridded time series of monthly air temperature (min, max, mean) and atmospheric precipitation for Ukraine covering the period of 1946–2020. Data in Brief, vol. 44, 2022, 108553. https://doi.org/10.1016/j.dib.2022.108553.
Aleksandrov Y.I., Bryazgin N.N., Førland E.J.: Seasonal, interannual and longterm variability of precipitation and snow depth in the region of the Barents and Kara seas. Polar Research, vol. 24(1–2), 2005, pp. 69–85. https://doi.org/10.3402/polar.v24i1.6254.
Central Geophysical Observatory: Archives of meteorological data [dataset], 1976–2020. Kyiv.
Szentimrey T., Bihari Z.: Manual of Interpolation Software MISHv1.03. Hungarian Meteorological Service, Budapest 2014.
Copernicus Climate Change Service (C3S): ERA5-Land hourly data from 1950 to present. 2021. https://doi.org/10.24381/cds.e2161bac.
Jacob D., Petersen J., Eggert B., Alias A., Christensen O.B., Bouwer L.M., Braun A., Colette A., Déqué M., Georgievski G., Georgopoulou E., Gobiet A., Menut L., Nikulin G., Haensler A., Hempelmann N., Jones C., Keuler K., Kovats S., ..., Yiou P.: EURO-CORDEX: New high-resolution climate change projections for European impact research. Regional Environmental Change, vol. 14(2), 2014, pp. 563–578. https://doi.org/10.1007/s10113-013-0499-2.
Taylor K.E., Stouffer R.J., Meehl G.A.: An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, vol. 93, 2012, pp. 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1.
Moss R.H., Edmonds J.A., Hibbard K.A., Manning M.R., Rose S.K., van Vuuren D.P., Carter T.R., Emori S., Kainuma M., Kram T., Meehl G.A., Mitchell J.F.B., Nakicenovic N., Riahi K., Smith S.J., Stouffer R.J., Thomson A.M., Weyant J.P., Wilbanks T.J.: The next generation of scenarios for climate change research and assessment. Nature, vol. 463, 2010, pp. 747–756. https://doi.org/10.1038/nature08823.
Weedon G.P., Balsamo G., Bellouin N., Gomes S., Best M.J., Viterbo P.: The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resources Research, vol. 50(9), 2014, pp. 7505–7514. https://doi.org/10.1002/2014WR015638.
Vrac M., Noël T., Vautard R.: Bias correction of precipitation through singularity stochastic removal: Because occurrences matter. Journal of Geophysical Research: Atmospheres, vol. 121, 2016, pp. 5237–5258. https://doi.org/10.1002/2015JD024511.
Landelius T., Dahlgren P., Gollvik S., Jansson A., Olsson E.: A high-resolution regional reanalysis for Europe. Part 2: 2D analysis of surface temperature, precipitation and wind. Quarterly Journal of the Royal Meteorological Society, vol. 142, 2016, pp. 2132–2142. https://doi.org/10.1002/qj.2813.
Yang W., Andréasson J., Graham P.L., Olsson J., Rosberg J., Wetterhall F.: Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies. Hydrology Research, vol. 41(3–4), 2010, pp. 211–229. https://doi.org/10.2166/nh.2010.004.
Fischer A.M., Strassmann K.M., Croci-Maspoli M., Hama A.M., Knutti R., Kotlarski S., Schär C., Schnadt Poberaj C., Ban N., Bavay M., Beyerle U., Bresch D.N., Brönnimann S., Burlando P., Casanueva A., Fatichi S., Feigenwinter I., Fischer E.M., Hirschi M., ..., Zubler E.M.: Climate scenarios for Switzerland CH2018 – Approach and implications. Climate Services, vol. 26, 2022, 100288. https://doi.org/10.1016/j.cliser.2022.100288.
Climate Change Viewer source code. https://github.com/StormInside/ClimateChangeViewer-Frontend-UHMI/tree/localize-end_2023-Herman [access: 30.06.2025].
Scott E.A., Jr.: SPA Design and Architecture: Understanding Single-Page Web Applications. Black & White, 2015.
Jánki Z.R., Bilicki V.: Rule-based architectural design pattern recognition with GPT models. Electronics, vol. 12(15), 2023, 3364. https://doi.org/10.3390/electronics12153364.
Filipova O.: Learning Vue.js 2. Packt Publishing, Birmingham 2016.
Kowalczyk K., Szandala T.: Enhancing SEO in single-page web applications in contrast with multi-page applications. IEEE Access, vol. 12, 2024, pp. 11597–11614. https://doi.org/10.1109/ACCESS.2024.3355740.
Edler D., Vetter M.: The simplicity of modern audiovisual web cartography: An example with the open-source JavaScript library leaflet.js. KN – Journal of Cartography and Geographic Information, vol. 69, 2019, pp. 51–62. https://doi.org/10.1007/s42489-019-00006-2.
Jose D.M., Dwarakish G.S.: Uncertainties in predicting impacts of climate change on hydrology in basin scale: a review. Arabian Journal of Geosciences, vol. 13, 2020, 1037. https://doi.org/10.1007/s12517-020-06071-6.
Mora C., Frazier A.G., Longman R.S., Dacks R.S., Walton M.M., Tong E.J., Sanchez J.J., Kaiser L.R., Stender Y.O., Anderson J.M., Ambrosino C.M., Fernandez-Silva I., Giuseffi L.M., Giambelluca T.W.: The projected timing of climate departure from recent variability. Nature, vol. 502, 2013, pp. 183–187. https://doi.org/10.1038/nature12540.
Snizhko S., Didovets I., Bronstert A.: Ukraine’s water security under pressure: Climate change and wartime. Water Security, vol. 23, 2024, 100182. https://doi.org/10.1016/j.wasec.2024.100182.
Verkhovna Rada Ukrayiny: Pro zatverdzhennya Metodychnykh rekomendatsiy shchodo zmistu rozroblennya rehionalnykh prohram z okhorony dovkillya. Nakaz Ministerstva Okhorony Navkolyshn’oho Seredovyshcha ta Pryrodnykh Resursiv Ukrayiny [Verkhovna Rada of Ukraine: On the approval of the Methodological recommendations on the content of developing regional environmental protection programs. Order Ministry of Environmental Protection and Natural Resources of Ukraine]. Document no. 486, July 11, 2023. https://zakon.rada.gov.ua/rada/main/en/l534130 [access: 10.06.2025].
Krakovska S., Kryshtop L.: Overall climate change impact assessment for Ukraine. Deutsche Gesellschaft für Internationale Zusammenarbeit, Bonn and Eschborn 2024. https://doi.org/10.13140/RG.2.2.34337.31840.
Kireitseva H., Tsyhanenko-Dziubenko I., Khomenko S., Lehenchuk R.: Application of multivariate statistical methods for analysis of climate projections. Scientific Journal Metinvest Polytechnic. Series Technical Sciences, no. 3, 2025, pp. 26–33. https://doi.org/10.32782/3041-2080/2025-3-3.
Jacobs K.L., Street R.B.: The next generation of climate services. Climate Services, vol. 20, 2020, 100199. https://doi.org/10.1016/j.cliser.2020.100199.
Fleming A., Bohensky E., Dutra L.X.C., Lin B.B., Melbourne-Thomas J., Moore T., Stone-Jovicich S., Tozer C., Clarke J.M., Donegan L., Hopkins M., Merson S., Remenyi T., Swirepik A., Vertigan C.: Perceptions of co-design, codevelopment and co-delivery (Co-3D) as part of the co-production process – Insights for climate services. Climate Services, vol. 30, 2023, pp. 100364. https://doi.org/10.1016/j.cliser.2023.100364.
Preuschmann S., Hänsler A., Kotova L., Dürk N., Eibner W., Waidhofer C., Haselberger C., Jacob D.: The IMPACT2C web-atlas – Conception, organization and aim of a web-based climate service product. Climate Services, vol. 7, 2017, pp. 115–125. https://doi.org/10.1016/j.cliser.2017.03.005.