Date Log

This work is licensed under a Creative Commons Attribution 4.0 International License.
River Area Segmentation Using Sentinel-1 SAR Imagery with Deep-Learning Approach
Corresponding Author(s) : Kadek Yota Ernanda Aryanto
Geomatics and Environmental Engineering,
Vol. 19 No. 4 (2025): Geomatics and Environmental Engineering
Abstract
River segmentation is important in delivering essential information for environmental analytics such as water management, flood/disaster management, observations of climate change, or human activities. Advances in remote-sensing technology have provided more complex features that limit the traditional approaches’ effectiveness. This work uses deep-learning-based models to enhance river extractions from satellite imagery. With Resnet-50 as the backbone network, CNN U-Net and DeepLabv3+ were utilized to perform the river segmentation of the Sentinel-1 C-Band synthetic aperture radar (SAR) imagery. The SAR data was selected due to its capability to capture surface details regardless of weather conditions, with VV+VH band polarizations being employed to improve water surface reflectivity. A total of 1080 images were utilized to train and test the models. The models’ performance was measured using the Dice coefficient. The CNN U-Net architecture achieved an accuracy of 0.94, while DeepLabv3+ attained an accuracy of 0.92. Although DeepLabv3+ showed more stability during the training and performed better on wider rivers, CNN U-Net excelled at identifying narrow rivers. In conclusion, a river-segmentation model was conducted using Sentinel-1 C-Band SAR data, with CNN U-Net outperforming DeepLabv3+; this enabled detailed river mapping for irrigationand flood-monitoring applications – particularly in cloud-prone tropical regions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Fan Z., Hou J., Zang Q., Chen Y., Yan F.: River segmentation of remote sensing images based on composite attention network. Complexity, vol. 2022, 2022. https://doi.org/10.1155/2022/7750281.
- Pai M.M.M., Mehrotra V., Aiyar S., Verma U., Pai R.M.: Automatic segmentation of river and land in SAR images: a deep learning approach, [in:] Proceedings of the IEEE 2nd International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 2019, pp. pp. 15–20. https://doi.org/10.1109/AIKE.2019.00011.
- Li Z., Wang R., Zhang W., Hu F., Meng L.: Multiscale features supported DeepLabv3+ optimization scheme for accurate water semantic segmentation. IEEE Access, vol. 7, 2019, pp. 155787–155804. https://doi.org/10.1109/ACCESS.2019.2949635.
- Ismanto R.D., Fitriana H.L., Manalu J., Purboyo A.A., Prasasti I.: Development of flood-hazard-mapping model using random forest and frequency ratio in Sumedang Regency, West Java, Indonesia. Geomatics and Environmental Engineering, vol. 17(6), 2023, pp. 129–157. https://doi.org/10.7494/geom.2023.17.6.129.
- Zhu H., Li C., Zhang L., Shen J.: River channel extraction from SAR images by combining gray and morphological features. Circuits, Systems and Signal Processing, vol. 34(7), 2015, pp. 2271–2286. https://doi.org/10.1007/s00034-014-9922-2.
- Vignesh T., Thyagharajan K.K.: Water bodies identification from multispectral images using Gabor filter, FCM and Canny edge detection methods, [in:] Proceedings of the 2017 International Conference on Information Communication and Embedded Systems (ICICES), IEEE, 2017, pp. 1–5. https://doi.org/10.1109/ICICES.2017.8070767.
- Liu Z., Li F., Li N., Wang R., Zhang H.: A novel region-merging approach for coastline extraction from Sentinel-1A IW mode SAR imagery. IEEE Geoscience and Remote Sensing Letters, vol. 13(3), 2016, pp. 324–328. https://doi.org/10.1109/LGRS.2015.2510745.
- Yang K., Li M., Liu Y., Cheng L., Huang Q., Chen Y.: River detection in remotely sensed imagery using Gabor filtering and path opening. Remote Sensing, vol. 7(7), 2015, pp. 8779–8802. https://doi.org/10.3390/rs70708779.
- Ciecholewski M.: River channel segmentation in polarimetric SAR images: watershed transform combined with average contrast maximisation. Expert Systems with Applications, vol. 82, 2017, pp. 196–215. https://doi.org/10.1016/j.eswa.2017.04.018.
- Ko B., Kim H., Nam J.: Classification of potential water bodies using Landsat 8 OLI and a combination of two boosted random forest classifiers. Sensors, vol. 15(6), 2015, pp. 13763–13777. https://doi.org/10.3390/s150613763.
- Goumehei E., Tolpekin V., Stein A., Yan W.: Surface water body detection in polarimetric sar data using contextual complex Wishart classification. Water Resources Research, vol. 55(8), 2019, pp. 7047–7059. https://doi.org/10.1029/2019WR025192.
- Wei Z., Jia K., Liu P., Jia X., Xie Y., Jiang Z.: Large-scale river mapping using contrastive learning and multi-source satellite imagery. Remote Sensing, vol. 13(15), 2021, 2893. https://doi.org/10.3390/rs13152893.
- Neupane B., Horanont T., Aryal J.: Deep learning-based semantic segmentation of urban features in satellite images: A review and meta-analysis. Remote Sensing, vol. 13(4), 2021, 808. https://doi.org/10.3390/rs13040808.
- Tian X., de Bruin S., Simoes R., Isik M. S., Minarik R., Ho Y.-F., Şahin M., Herold M., Consoli D., Hengl T.: Spatiotemporal prediction of soil organic carbon density for Europe (2000–2022) in 3D+T based on Landsat-based spectral indices time-series. Research Square, 2024. https://doi.org/10.21203/rs.3.rs-5128244/v1.
- Singh G., Dahiya N., Sood V., Singh S., Sharma A.: ENVINet5 deep learning change detection framework for the estimation of agriculture variations during 2012–2023 with Landsat series data. Environmental Monitoring and Assessment, vol. 196(3), 2024, 233. https://doi.org/10.1007/s10661-024-12394-8.
- Ait El Asri S., Negabi I., El Adib S., Raissouni N.: Enhancing building extraction from remote sensing images through UNet and transfer learning. International Journal of Computers and Applications, vol. 45(5), 2023, pp. 413–419. https://doi.org/10.1080/1206212X.2023.2219117.
- Hao S., Zhou Y., Guo Y.: A brief survey on semantic segmentation with deep learning. Neurocomputing, vol. 406, 2020, pp. 302–321. https://doi.org/10.1016/j.neucom.2019.11.118.
- Yu H., Yang Z., Tan L., Wang Y., Sun W., Sun M., Tang Y.: Methods and datasets on semantic segmentation: A review. Neurocomputing, vol. 304, 2018, pp. 82–103. https://doi.org/10.1016/j.neucom.2018.03.037.
- Wang P., Chen P., Yuan Y., Liu D., Huang Z., Hou X., Cottrell G.: Understanding convolution for semantic segmentation, [in:] 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2018, pp. 1451–1460. https://doi.org/10.1109/WACV.2018.00163.
- Guo Y., Liu Y., Georgiou T., Lew M.S.: A review of semantic segmentation using deep neural networks. International Journal of Multimedia Information Retrieval, vol. 7(2), 2018, pp. 87–93. https://doi.org/10.1007/s13735-017-0141-z.
- Khan S.D., Alarabi L., Basalamah S.: Deep hybrid network for land cover semantic segmentation in high-spatial resolution satellite images. Information, vol. 12(6), 2021, p. 230. https://doi.org/10.3390/info12060230.
- Wurm M., Stark T., Zhu X.X., Weigand M., Taubenböck H.: Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 150, 2019, pp. 59–69. https://doi.org/10.1016/j.isprsjprs.2019.02.006.
- Barthakur M., Sarma K.K.: Semantic segmentation using K-means clustering and deep learning in satellite image, [in:] 2019 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), IEEE, 2019, pp. 192–196. https://doi.org/10.1109/IESPC.2019.8902391.
- Hordiiuk D., Oliinyk I., Hnatushenko V., Maksymov K.: Semantic segmentation for ships detection from satellite imagery, [in:] 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), IEEE, 2019, pp. 454–457. https://doi.org/10.1109/ELNANO.2019.8783822.
- Askevold R., Vågen M.: Automated mapping and change detection of rivers and inland water bodies by semantic segmentation of SAR imagery using deep learning. NTNU, Trondheim 2022 [M.Sc. thesis]. https://hdl.handle.net/11250/3020996.
- Zou Q., Yu J., Fang H., Qin J., Zhang J., Liu S.: Group-based atrous convolution stereo matching network. Wireless Communications and Mobile Computing, vol. 2021(1), 2021, 7386280. https://doi.org/10.1155/2021/7386280.
- Carreño Conde F., De Mata Muñoz M.: Flood monitoring based on the study of Sentinel-1 SAR images: The Ebro River case study. Water (Basel), vol. 11(12), 2019, 2454. https://doi.org/10.3390/w11122454.
- Belba P., Kucaj S., Thanas J.: Monitoring of water bodies and non-vegetated areas in Selenica – Albania with SAR and optical images. Geomatics and Environmental Engineering, vol. 16(3), 2022, pp. 5–25. https://doi.org/10.7494/geom.2022.16.3.5.
- Pappas O.A., Anantrasirichai N., Achim A.M., Adams B.A.: River planform extraction from high-resolution SAR images via generalized gamma distribution superpixel classification. IEEE Transactions on Geoscience and Remote Sensing, vol. 59(5), 2021, pp. 3942–3955. https://doi.org/10.1109/TGRS.2020.3011209.
- Verma U., Chauhan A., Pai M.M.M., Pai R.: DeepRivWidth: Deep learning based semantic segmentation approach for river identification and width measurement in SAR images of Coastal Karnataka. Computers & Geosciences, vol. 154, 2021, 104805. https://doi.org/10.1016/j.cageo.2021.104805.
- Cai Q., Wan R., Li H., Wang C., Chang H.: Remote sensing image river segmentation method based on U-Net, [in:] 2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS), IEEE, 2022, pp. 215–220. https://doi.org/10.1109/CCIS57298.2022.10016397.
- Chen S., Wei X., Zheng W.: ASA-DRNet: An improved DeepLabv3+ framework for SAR image segmentation. Electronics (Switzerland), vol. 12(6), 2023, 1300. https://doi.org/10.3390/electronics12061300.
- Pham-Duc B., Prigent C., Aires F.: Surface water monitoring within Cambodia and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations. Water (Basel), vol. 9(6), 2017, 366. https://doi.org/10.3390/w9060366.
- Ronneberger O., Fischer P., Brox T.: U-Net: convolutional networks for biomedical image segmentation, [in:] Navab N., Hornegger J., Wells W., Frangi A. (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015, Lecture Notes in Computer Science, vol. 9351, Springer, Cham 2015, pp. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28.
- Kolhar S., Jagtap J.: Convolutional neural network based encoder-decoder architectures for semantic segmentation of plants. Ecological Informatics, vol. 64, 2021, 101373. https://doi.org/10.1016/j.ecoinf.2021.101373.
- Jadon S.: A survey of loss functions for semantic segmentation, [in:] 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2020), IEEE, 2020, pp. 1–7, https://doi.org/10.1109/CIBCB48159.2020.9277638.
- Zandsalimi Z., Barbosa S.A., Alemazkoor N., Goodall J.L., Shafiee-Jood M.: Deep learning-based downscaling of global digital elevation models for enhanced urban flood modeling. Journal of Hydrology (Amsterdam), vol. 653, 2025, 132687. https://doi.org/10.1016/j.jhydrol.2025.132687.
References
Fan Z., Hou J., Zang Q., Chen Y., Yan F.: River segmentation of remote sensing images based on composite attention network. Complexity, vol. 2022, 2022. https://doi.org/10.1155/2022/7750281.
Pai M.M.M., Mehrotra V., Aiyar S., Verma U., Pai R.M.: Automatic segmentation of river and land in SAR images: a deep learning approach, [in:] Proceedings of the IEEE 2nd International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 2019, pp. pp. 15–20. https://doi.org/10.1109/AIKE.2019.00011.
Li Z., Wang R., Zhang W., Hu F., Meng L.: Multiscale features supported DeepLabv3+ optimization scheme for accurate water semantic segmentation. IEEE Access, vol. 7, 2019, pp. 155787–155804. https://doi.org/10.1109/ACCESS.2019.2949635.
Ismanto R.D., Fitriana H.L., Manalu J., Purboyo A.A., Prasasti I.: Development of flood-hazard-mapping model using random forest and frequency ratio in Sumedang Regency, West Java, Indonesia. Geomatics and Environmental Engineering, vol. 17(6), 2023, pp. 129–157. https://doi.org/10.7494/geom.2023.17.6.129.
Zhu H., Li C., Zhang L., Shen J.: River channel extraction from SAR images by combining gray and morphological features. Circuits, Systems and Signal Processing, vol. 34(7), 2015, pp. 2271–2286. https://doi.org/10.1007/s00034-014-9922-2.
Vignesh T., Thyagharajan K.K.: Water bodies identification from multispectral images using Gabor filter, FCM and Canny edge detection methods, [in:] Proceedings of the 2017 International Conference on Information Communication and Embedded Systems (ICICES), IEEE, 2017, pp. 1–5. https://doi.org/10.1109/ICICES.2017.8070767.
Liu Z., Li F., Li N., Wang R., Zhang H.: A novel region-merging approach for coastline extraction from Sentinel-1A IW mode SAR imagery. IEEE Geoscience and Remote Sensing Letters, vol. 13(3), 2016, pp. 324–328. https://doi.org/10.1109/LGRS.2015.2510745.
Yang K., Li M., Liu Y., Cheng L., Huang Q., Chen Y.: River detection in remotely sensed imagery using Gabor filtering and path opening. Remote Sensing, vol. 7(7), 2015, pp. 8779–8802. https://doi.org/10.3390/rs70708779.
Ciecholewski M.: River channel segmentation in polarimetric SAR images: watershed transform combined with average contrast maximisation. Expert Systems with Applications, vol. 82, 2017, pp. 196–215. https://doi.org/10.1016/j.eswa.2017.04.018.
Ko B., Kim H., Nam J.: Classification of potential water bodies using Landsat 8 OLI and a combination of two boosted random forest classifiers. Sensors, vol. 15(6), 2015, pp. 13763–13777. https://doi.org/10.3390/s150613763.
Goumehei E., Tolpekin V., Stein A., Yan W.: Surface water body detection in polarimetric sar data using contextual complex Wishart classification. Water Resources Research, vol. 55(8), 2019, pp. 7047–7059. https://doi.org/10.1029/2019WR025192.
Wei Z., Jia K., Liu P., Jia X., Xie Y., Jiang Z.: Large-scale river mapping using contrastive learning and multi-source satellite imagery. Remote Sensing, vol. 13(15), 2021, 2893. https://doi.org/10.3390/rs13152893.
Neupane B., Horanont T., Aryal J.: Deep learning-based semantic segmentation of urban features in satellite images: A review and meta-analysis. Remote Sensing, vol. 13(4), 2021, 808. https://doi.org/10.3390/rs13040808.
Tian X., de Bruin S., Simoes R., Isik M. S., Minarik R., Ho Y.-F., Şahin M., Herold M., Consoli D., Hengl T.: Spatiotemporal prediction of soil organic carbon density for Europe (2000–2022) in 3D+T based on Landsat-based spectral indices time-series. Research Square, 2024. https://doi.org/10.21203/rs.3.rs-5128244/v1.
Singh G., Dahiya N., Sood V., Singh S., Sharma A.: ENVINet5 deep learning change detection framework for the estimation of agriculture variations during 2012–2023 with Landsat series data. Environmental Monitoring and Assessment, vol. 196(3), 2024, 233. https://doi.org/10.1007/s10661-024-12394-8.
Ait El Asri S., Negabi I., El Adib S., Raissouni N.: Enhancing building extraction from remote sensing images through UNet and transfer learning. International Journal of Computers and Applications, vol. 45(5), 2023, pp. 413–419. https://doi.org/10.1080/1206212X.2023.2219117.
Hao S., Zhou Y., Guo Y.: A brief survey on semantic segmentation with deep learning. Neurocomputing, vol. 406, 2020, pp. 302–321. https://doi.org/10.1016/j.neucom.2019.11.118.
Yu H., Yang Z., Tan L., Wang Y., Sun W., Sun M., Tang Y.: Methods and datasets on semantic segmentation: A review. Neurocomputing, vol. 304, 2018, pp. 82–103. https://doi.org/10.1016/j.neucom.2018.03.037.
Wang P., Chen P., Yuan Y., Liu D., Huang Z., Hou X., Cottrell G.: Understanding convolution for semantic segmentation, [in:] 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2018, pp. 1451–1460. https://doi.org/10.1109/WACV.2018.00163.
Guo Y., Liu Y., Georgiou T., Lew M.S.: A review of semantic segmentation using deep neural networks. International Journal of Multimedia Information Retrieval, vol. 7(2), 2018, pp. 87–93. https://doi.org/10.1007/s13735-017-0141-z.
Khan S.D., Alarabi L., Basalamah S.: Deep hybrid network for land cover semantic segmentation in high-spatial resolution satellite images. Information, vol. 12(6), 2021, p. 230. https://doi.org/10.3390/info12060230.
Wurm M., Stark T., Zhu X.X., Weigand M., Taubenböck H.: Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 150, 2019, pp. 59–69. https://doi.org/10.1016/j.isprsjprs.2019.02.006.
Barthakur M., Sarma K.K.: Semantic segmentation using K-means clustering and deep learning in satellite image, [in:] 2019 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), IEEE, 2019, pp. 192–196. https://doi.org/10.1109/IESPC.2019.8902391.
Hordiiuk D., Oliinyk I., Hnatushenko V., Maksymov K.: Semantic segmentation for ships detection from satellite imagery, [in:] 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), IEEE, 2019, pp. 454–457. https://doi.org/10.1109/ELNANO.2019.8783822.
Askevold R., Vågen M.: Automated mapping and change detection of rivers and inland water bodies by semantic segmentation of SAR imagery using deep learning. NTNU, Trondheim 2022 [M.Sc. thesis]. https://hdl.handle.net/11250/3020996.
Zou Q., Yu J., Fang H., Qin J., Zhang J., Liu S.: Group-based atrous convolution stereo matching network. Wireless Communications and Mobile Computing, vol. 2021(1), 2021, 7386280. https://doi.org/10.1155/2021/7386280.
Carreño Conde F., De Mata Muñoz M.: Flood monitoring based on the study of Sentinel-1 SAR images: The Ebro River case study. Water (Basel), vol. 11(12), 2019, 2454. https://doi.org/10.3390/w11122454.
Belba P., Kucaj S., Thanas J.: Monitoring of water bodies and non-vegetated areas in Selenica – Albania with SAR and optical images. Geomatics and Environmental Engineering, vol. 16(3), 2022, pp. 5–25. https://doi.org/10.7494/geom.2022.16.3.5.
Pappas O.A., Anantrasirichai N., Achim A.M., Adams B.A.: River planform extraction from high-resolution SAR images via generalized gamma distribution superpixel classification. IEEE Transactions on Geoscience and Remote Sensing, vol. 59(5), 2021, pp. 3942–3955. https://doi.org/10.1109/TGRS.2020.3011209.
Verma U., Chauhan A., Pai M.M.M., Pai R.: DeepRivWidth: Deep learning based semantic segmentation approach for river identification and width measurement in SAR images of Coastal Karnataka. Computers & Geosciences, vol. 154, 2021, 104805. https://doi.org/10.1016/j.cageo.2021.104805.
Cai Q., Wan R., Li H., Wang C., Chang H.: Remote sensing image river segmentation method based on U-Net, [in:] 2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS), IEEE, 2022, pp. 215–220. https://doi.org/10.1109/CCIS57298.2022.10016397.
Chen S., Wei X., Zheng W.: ASA-DRNet: An improved DeepLabv3+ framework for SAR image segmentation. Electronics (Switzerland), vol. 12(6), 2023, 1300. https://doi.org/10.3390/electronics12061300.
Pham-Duc B., Prigent C., Aires F.: Surface water monitoring within Cambodia and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations. Water (Basel), vol. 9(6), 2017, 366. https://doi.org/10.3390/w9060366.
Ronneberger O., Fischer P., Brox T.: U-Net: convolutional networks for biomedical image segmentation, [in:] Navab N., Hornegger J., Wells W., Frangi A. (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015, Lecture Notes in Computer Science, vol. 9351, Springer, Cham 2015, pp. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28.
Kolhar S., Jagtap J.: Convolutional neural network based encoder-decoder architectures for semantic segmentation of plants. Ecological Informatics, vol. 64, 2021, 101373. https://doi.org/10.1016/j.ecoinf.2021.101373.
Jadon S.: A survey of loss functions for semantic segmentation, [in:] 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2020), IEEE, 2020, pp. 1–7, https://doi.org/10.1109/CIBCB48159.2020.9277638.
Zandsalimi Z., Barbosa S.A., Alemazkoor N., Goodall J.L., Shafiee-Jood M.: Deep learning-based downscaling of global digital elevation models for enhanced urban flood modeling. Journal of Hydrology (Amsterdam), vol. 653, 2025, 132687. https://doi.org/10.1016/j.jhydrol.2025.132687.