Date Log

This work is licensed under a Creative Commons Attribution 4.0 International License.
Assessing Urban Growth Toward Earthquake-Hazard Zone in Yogyakarta and Bantul, Indonesia
Corresponding Author(s) : Nur Miladan
Geomatics and Environmental Engineering,
Vol. 20 No. 1 (2026): Geomatics and Environmental Engineering
Abstract
Bantul and Yogyakarta are regions with earthquake-hazard risks in Indonesia. The earthquake that occurred in 2006 produced deaths, high economic losses, and significant damages to the housing and infrastructure. This research aimed to assess the urban growth in the earthquake-hazard zone in Bantul and Yogyakarta. The study used the remote sensing method of nighttime light (NTL), zonal statistics, and ClockBoard zone analysis. The combination of these analysis techniques for linking urban growth and earthquake hazards has not been widely discussed by previous studies. The earthquake-hazard data was retrieved from the United States Geological Survey website; meanwhile, the NTL data was based on the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite.
The results indicated that those zone segments at very high earthquake-hazard levels were also areas with night-light intensities of more than ten units (meaning increasing urban growth). Based on these facts, local governments should evaluate spatial planning to limit the density of built-up areas in earthquake-hazard areas and ensure the effective implementation of urban sustainability and resilience.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Erdik M.: Urban earthquake risk, [in:] Geohazards, ECI Symposium Series, 2006, ECI Digital Archives. https://dc.engconfintl.org/geohazards/17 [access: October 26, 2024].
- Giovinazzi S., Marchili C., Pietro A.D., Giordano L., Costanzo A., Porta L.L., Pollino M., Rosato V., Lückerath D., Milde K., Ullrich O.: Assessing earthquake impacts and monitoring resilience of historic areas: Methods for GIS tools. ISPRS International Journal of Geo-Information, vol. 10(7), 461. https://doi.org/10.3390/ijgi10070461 2021.
- Ao Y., Zhang H., Yang L., Wang Y., Martek I., Wang G.: Impacts of earthquake knowledge and risk perception on earthquake preparedness of rural residents. Natural Hazards, vol. 107, 2021, pp. 1287–1310. https://doi.org/10.1007/s11069-021-04632-w.
- Ehrlich D., Melchiorri M., Florczyk A.J., Pesaresi M., Kemper T., Corbane C., Freire S., Schiavina M., Siragusa A.: Remote sensing derived built-up area and population density to quantify global exposure to five natural hazards over time. Remote Sensing, vol. 10(9), 2018, 1378. https://doi.org/10.3390/rs10091378.
- Ehrlich D., Kemper T., Pesaresi M., Corbane C.: Built-up area and population density: Two essential societal variables to address climate hazard impact. Environmental Science & Policy, vol. 90, 2018, pp. 73–82. https://doi.org/10.1016/j.envsci.2018.10.001.
- Chen Y., Xie W., Xu X.: Changes of population, built-up land, and cropland exposure to natural hazards in China from 1995 to 2015. International Journal of Disaster Risk Science, vol. 10(4), 2019, pp. 557–572. https://doi.org/10.1007/s13753-019-00242-0.
- Bostenaru Dan M., Armaş I., Goretti A.: Earthquake hazard impact and urban planning – an introduction, [in:] Bostenaru Dan M., Armaş I., Goretti A. (eds.), Earthquake Hazard Impact and Urban Planning, Environmental Hazards, Springer, Dordrecht 2014, pp. 1–12. https://doi.org/10.1007/978-94-007-7981-5_1.
- Motamed H., Ghafory-Ashtiany M., Amini-Hosseini K., Mansouri B., Khazai B.: Earthquake risk-sensitive model for urban land use planning. Natural Hazards, vol. 103(1), 2020, pp. 87–102. https://doi.org/10.1007/s11069-020-03960-7.
- Kodag S., Mani S.K., Balamurugan G., Bera S.: Earthquake and flood resilience through spatial planning in the complex urban system. Progress in Disaster Science, vol. 14, 2022, pp. 100219. https://doi.org/10.1016/j.pdisas.2022.100219.
- Tudes S.: Correlation between geology, earthquake and urban planning, [in:] D’Amico S. (ed.), Earthquake Research and Analysis: Statistical Studies, Observations and Planning, InTech, Rijeka 2012, pp. 417–434.
- Mileu N., Queirós M.: Integrating risk assessment into spatial planning: RiskOTe decision support system. ISPRS International Journal of Geo-Information, vol. 7(5), 2018, 184. https://doi.org/10.3390/ijgi7050184.
- Barua U., Islam I., Ansary M.A.: Integration of earthquake risk-sensitivity into landuse planning: An approach for a local level area at development phase. International Journal of Disaster Risk Reduction, vol. 50, 2020, 101836. https://doi.org/10.1016/j.ijdrr.2020.101836.
- Xu S., Dimasaka J., Wald D.J., Noh H.Y.: Seismic multi-hazard and impact estimation via causal inference from satellite imagery. Nature Communications, vol. 13(1), 2022, 7793. https://doi.org/10.1038/s41467-022-35418-8.
- Li X., Bürgi P.M., Ma W., Noh H.Y., Wald D.J., Xu S.: Disasternet: Causal Bayesian networks with normalizing flows for cascading hazards estimation from satellite imagery, [in:] KDD 23: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York 2023, pp. 4391–4403. https://doi.org/10.1145/3580305.3599807.
- Xu S., Dimasaka J., Wald D.J., Noh H.Y.: Bayesian updating of seismic ground failure estimates via causal graphical models and satellite imagery. arXiv, 2022. https://doi.org/10.48550/arXiv.2204.07653.
- Williams J.G., Rosser N.J., Kincey M.E., Benjamin J., Oven K.J., Densmore A.L., Milledge D.G., Robinson T.R., Jordan C.A., Dijkstra T.A.: Satellite-based emergency mapping using optical imagery: Experience and reflections from the 2015 Nepal earthquakes. Natural Hazards and Earth System Sciences, vol. 18(1), 2018, pp. 185–205. https://doi.org/10.5194/nhess-18-185-2018.
- Habibie M.I., Purwono N.: Identification of socio-economic activities as urban growth based on nighttime light data (study on kendal district-indonesia), [in:] 2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), IEEE, 2022, pp. 169–173. https://doi.org/10.1109/AGERS56232.2022.10093456.
- Jiang S., Wei G., Zhang Z., Wang Y., Xu M., Wang Q., Das P., Liu B.: Detecting the dynamics of urban growth in Africa using DMSP/OLS nighttime light data. Land, vol. 10(1), 2020, 13. https://doi.org/10.3390/land10010013.
- Yu T., Liu C., Li W., Huang W., Wu H., Fan Z.: Characterizing urban actively populated area growth in the Yangtze River Delta using nighttime light data. International Journal of Applied Earth Observation and Geoinformation, vol. 129, 2024, 103857. https://doi.org/10.1016/j.jag.2024.103857.
- Liu L., Wu W., Bai X., Shang W.: Spatio-temporal evolution, internal diversity, and driving factors of economy of Guanzhong Plain urban agglomeration in Northwestern China based on nighttime light data. Land, vol. 13(12), 2024, 2093. https://doi.org/10.3390/land13122093.
- Tian H., Liu Y., Tian Y., Jing Y., Liu S., Liu X., Zhang Y.: Advances in the use of nighttime light data to monitor and assess coastal fisheries under the impacts of human activities and climate and environmental changes: A case study in the Beibu Gulf. Marine Policy, vol. 144, 2022, 105227. https://doi.org/10.1016/j.marpol.2022.105227.
- Määttä I., Ferreira T., Leßmann C.: Nighttime lights and wealth in very small areas. Review of Regional Research, vol. 42(2), 2022, pp. 161–190. https://doi.org/10.1007/s10037-021-00159-6.
- Wang L., Li Z., Han J., Fan K., Chen Y., Wang J., Fu J.: A cost-effective earthquake disaster assessment model for power systems based on nighttime light information. Applied Sciences, vol. 14(6), 2024, 2325. https://doi.org/10.3390/app14062325.
- Pan Y., Jiang L., Wang J., Ma J., Bao S., Lin Y., Shi K.: Mapping and evaluating spatiotemporal patterns of urban expansion in global earthquake-affected areas: A nighttime light remote sensing perspective. International Journal of Digital Earth,vol.17(1),2024,2419938.https://doi.org/10.1080/17538947.2024.2419938.
- Liu Z., Zhang J., Li X., Chen X.: Long-term resilience curve analysis of Wenchuan earthquake-affected counties using DMSP-OLS nighttime light images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, 2021, pp. 10854–10874. https://doi.org/10.1109/JSTARS.2021.3121789.
- Li X., Liu Z., Chen X., Meng Q.: Assessment of the impact of the 2010 Haiti earthquake on human activity based on DMSP/OLS time series nighttime light data. Journal of Applied Remote Sensing, vol. 13(4), 2019, 044515. https://doi.org/10.1117/1.JRS.13.044515.
- Xiao Z., Pan Y., Jiang L., Wang Z., Shi K.: Remote sensing nighttime lights reveal the post-earthquake losses and reconstruction situations in Turkey–Syria earthquake areas. IEEE Geoscience and Remote Sensing Letters, vol. 21, 2024, 3002405. https://doi.org/10.1109/LGRS.2024.3397864.
- Zhang D., Huang H., Roy N., Roozbahani M.M., Frost J.D.: Black marble nighttime light data for disaster damage assessment. Remote Sensing, vol. 15(17), 2023, 4257. https://doi.org/10.3390/rs15174257.
- Chanief A.Z., Yola L.: Analysis of urban mobility patterns in Jakarta city during pandemic Covid-19, [in:] Nia E.M., Awang M., Aulady M.F.N., Traykova M., Yola L. (eds.), Selected Articles from the 8th International Conference on Architecture and Civil Engineering: ICACE 2024, 12–13 December, Penang, Malaysia, Lecture Notes in Civil Engineering, vol. 635, Springer, Singapore 2025, pp. 304–310. https://doi.org/10.1007/978-981-96-5654-7_30.
- Alders W.: Open-access archaeological predictive modeling using zonal statistics: A case study from Zanzibar, Tanzania. Journal of Computer Applications in Archaeology, vol. 6(1), 2023, pp. 117–142. https://doi.org/10.5334/jcaa.107.
- Pambudi N.A.: Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy. Renewable and Sustainable Energy Reviews, vol. 81(2), 2018, pp. 2893–2901. https://doi.org/10.1016/j.rser.2017.06.096.
- Cummins P.R., Pranantyo I.R., Pownall J.M., Griffin J.D., Meilano I., Zhao S.: Earthquakes and tsunamis caused by low-angle normal faulting in the Banda Sea, Indonesia. Nature Geoscience, vol. 13, 2020, pp. 312–318. https://doi.org/10.1038/s41561-020-0545-x.
- Masum M., Akbar M.A.: The Pacific Ring of Fire is working as a home country of geothermal resources in the world. IOP Conference Series: Earth and Environmental Science, vol. 249, 2019, 012020. https://doi.org/10.1088/1755-1315/249/1/012020.
- Chelminski K.: Harnessing the Ring of Fire: Political Economy of Clean Energy Development Finance on Geothermal Development in Indonesia and the Philippines. Energy Policy Research Group, University of Cambridge, 2018. http://www.jstor.org/stable/resrep30435 [access: October 26, 2024].
- Fuady M., Munadi R., Fuady M.A.K.: Disaster mitigation in Indonesia: Between plans and reality. IOP Conference Series: Materials Science and Engineering, vol. 1087, 2021, 012011. https://doi.org/10.1088/1757-899X/1087/1/012011.
- Pribadi K.S., Kusumastuti D., Sagala S.A.H., Wimbardana R.: Post-disaster housing reconstruction in Indonesia: Review and lessons from Aceh, Yogyakarta, West Java and West Sumatera earthquakes, [in:] Shaw R. (ed.), Disaster Recovery: Disaster Risk Reduction, Springer, Tokyo 2014, pp. 197–223. https://doi.org/10.1007/978-4-431-54255-1.
- Kusumasari B., Alam Q.: Local wisdom-based disaster recovery model in Indonesia. Disaster Prevention and Management, vol. 21(3), 2012, pp. 351–369. https://doi.org/10.1108/09653561211234525.
- BPS-Statistics of Yogyakarta Municipality: Yogyakarta Municipality in Figures 2024. 2024. https://jogjakota.bps.go.id/en/publication/2024/02/28/6a6d984e3d10d2113c9d3f3b/yogyakarta-municipality-in-figures-2024.html [access: October 26, 2024].
- BPS-Statistics of DI Yogyakarta Province: Growth Rate of Population by Regency/Municipality, 1971–2020 (persen/year ). 2024. https://yogyakarta.bps.go.id/en/statistics-table/1/MTY4IzE=/growth-rate-of-population-by-regency-municipality--1971-2020--persen-year-.html [access: October 26, 2024].
- BPS-Statistics of Bantul Regency: Bantul Regency in Figures 2023. 2023. https://bantulkab.bps.go.id/en/publication/2023/02/28/e90ab2b5613a5bd94f524fcb/kabupaten-bantul-dalam-angka-2023.html [access: October 26, 2024].
- Disaster Management Agency of Yogyakarta Municipality: Kajian risiko bencana kota Yogyakarta 2022–2026 [Disaster risk assessment of Yogyakarta city for 2022–2026]. Yogyakarta, 2022. https://bpbd.jogjakota.go.id/assets/instansi/bpbd/files/dokmen-kajian-risiko-bencana-kota-yogyakarta-2022-2026-13325.pdf [access: October 26, 2024].
- Sulistiyana A.: Duka dari bumi Projotamansari: Arsip korban gempa bumi 2006 di Bantul [Grief from the land of Projotamansari: Archive of the victims of the 2006 earthquake in Bantul]. Bantul Library and Archive Agency, Bantul 2018. https://perpusda.bantulkab.go.id/pc/59323#pablo [access: October 26, 2024].
- National Center for Earthquake Studies: Peta Sumber Dan Bahaya Gempa Indonesia Tahun 2017 [Map of Indonesian earthquake hazard and source in 2017]. https://luk.staff.ugm.ac.id/gempa/pdf/Pusgen2017PetaGempaIndonesia.pdf [access: October 26, 2024].
- Widjajanti N., Nata B., Parseno P.: Displacement velocity and strain analysis of Opak Fault monitoring stations. IOP Conference Series: Earth and Environmental Science, vol. 936, 2021, 012042. https://doi.org/10.1088/1755-1315/936/1/012042.
- Abidin H.Z., Andreas H., Meilano I., Gamal M., Gumilar I., Abdullah C.I.: Deformasi koseismik dan pascaseismik gempa Yogyakarta 2006 dari hasil survei GPS. Indonesian Journal on Geoscience, vol. 4(4), 2009, pp. 275–284. https://doi.org/10.17014/ijog.4.4.275-284.
- Steinritz V., Pena-Castellnou S., Marliyani G.I., Reicherter K.: GIS-based study of tsunami risk in the Special Region of Yogyakarta (Central Java, Indonesia). IOP Conference Series: Earth and Environmental Science, vol. 851, 2021, 012007. https://doi.org/10.1088/1755-1315/851/1/012007.
- Tsuji T., Yamamoto K., Matsuoka T., Yamada Y., Onishi K., Bahar A., Meilano I., Abidin H.Z.: Earthquake fault of the 26 May 2006 Yogyakarta earthquake observed by SAR interferometry. Earth, Planet and Space, vol. 61(7), 2009, pp. e29–e32. https://doi.org/10.1186/BF03353189.
- Yuan Y., Chen Z.: The impacts of land cover spatial combination on nighttime light intensity in 2010 and 2020: A case study of Fuzhou, China. Computer Urban Science, vol. 3(1), 2023. https://doi.org/10.1007/s43762-023-00077-y.
- Ma T., Zhou Y., Zhou C., Haynie S., Pei T., Xu T.: Night-time light derived estimation of spatio-temporal characteristics of urbanisation dynamics using DMSP/ OLS satellite data. Remote Sensing of Environment, vol. 158, 2015, pp. 453–464. https://doi.org/10.1016/j.rse.2014.11.022.
- Cao C., De Luccia F.J., Xiong X., Wolfe R., Weng F.: Early on-orbit performance of the Visible Infrared Imaging Radiometer Suite onboard the Suomi National PolarOrbiting Partnership (S-NPP) satellite. IEEE Transactions on Geoscience and Remote Sensing, vol. 52(2), 2014, pp. 1142–1156. https://doi.org/10.1109/TGRS.2013.2247768.
- Csiszar I., Schroeder W., Giglio L., Ellicott E., Vadrevu K.P., Justice C.O., Wind B.: Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results. Journal of Geophysical Research: Atmospheres, vol. 119(2), 2014, pp. 803–816. https://doi.org/10.1002/2013jd020453.
- Elvidge C.D., Zhizhin M., Baugh K., Hsu F.C., Ghosh T.: Methods for global survey of natural gas flaring from Visible Infrared Imaging Radiometer Suite data. Energies, vol. 9(1), 2016. https://doi.org/10.3390/en9010014.
- Trishchenko A.P.: Clear-sky composites over Canada from Visible Infrared Imaging Radiometer Suite: Continuing MODIS time series into the future. Canadian Journal of Remote Sensing, vol. 45(3–4), 2019, pp. 276–289. https://doi.org/10.1080/07038992.2019.1601006.
- Miller S.D., Straka W. III., Mills S.P., Elvidge C.D., Lee T.F., Solbrig J., Walther A., Heidinger A.K., Weiss S.C.: Illuminating the capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sensing, vol. 5(12), 2013, pp. 6717–6766. https://doi.org/10.3390/rs5126717.
- Seaman C., Hillger D.W., Kopp T.J., Williams R., Miller S., Lindsey D.: Visible Infrared Imaging Radiometer Suite (VIIRS) Imagery Environmental Data Record (EDR) user’s guide. U.S. Department of Commerce National Oceanic and Atmospheric Administration, Washington 2015. http://doi.org/10.7289/V5/TR-NESDIS-150.
- Eplee R.E., Turpie K.R., Meister G., Patt F.S., Franz B.A., Bailey S.W.: On-orbit calibration of the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite for ocean colour applications. Applied Optics, vol. 54(8), 2015, pp. 1984–2006. https://doi.org/10.1364/ao.54.001984.
- Guillevic P.C., Biard J.C., Hulley G.C., Privette J.L., Hook S.J., Olioso A., Göttsche F.M., Radocinski R., Román M.O., Yu Y., Csiszar I.: Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sensing of Environment, vol. 154, 2014, pp. 19–37. https://doi.org/10.1016/j.rse.2014.08.013.
- Setiawan Y., Kustiyo K., Hudjimartsu S.A., Purwanto J., Rovani R., Tosiani A., Usman A.B., Kartika T., Indriasari N., Prasetyo L.B., Margono B.A.: Evaluating Visible-Infrared Imaging Radiometer Suite imagery for developing nearreal-time nationwide vegetation cover monitoring in Indonesia. Remote Sensing, vol. 16(11), 2024, 1958. https://doi.org/10.3390/rs16111958.
- Falchi F., Cinzano P., Duriscoe D., Kyba C.C., Elvidge C.D., Baugh K., Portnov B.A., Rybnikova N.A., Furgoni R.: The new world atlas of artificial night sky brightness. Science Advances, vol. 2(6), 2016, e1600377. http://doi.org/10.1126/sciadv.1600377.
- Yang Y., Zhao C., Sun L., Wei J.: Improved aerosol retrievals over complex regions using NPP Visible Infrared Imaging Radiometer Suite observations. Earth and Space Science, vol. 6(4), 2019, pp. 629–645. https://doi.org/10.1029/2019EA000574.
- Li P., Xiao C., Feng Z., Li W., Zhang X.: Occurrence frequencies and regional variations in Visible Infrared Imaging Radiometer Suite (VIIRS) global active fires. Global Change Biology, vol. 26(5), 2020, pp. 2970–2987. https://doi.org/10.1111/gcb.15034.
- Flenniken J.M., Stuglik S., Iannone B.V.: Quantum GIS (QGIS): An introduction to a free alternative to more costly GIS platforms: FOR359/FR428, 2/2020. EDIS, vol. 2020(2), 2020. https://doi.org/10.32473/edis-fr428-2020.
- Novo A., Garrido I., Lorenzo H., Arias P.: Use of geographic information systems (GIS) in higher education: Practical geomatics applications with Quantum GIS software, [in:] 2022 International Symposium on Computers in Education (SIIE), IEEE, 2022, pp. 1–6. https://doi.org/10.1109/SIIE56031.2022.9982364.
- Alders W.: Open-access archaeological predictive modelling using zonal statistics: A case study from Zanzibar, Tanzania. Journal of Computer Applications in Archaeology, vol. 6(1), 2023, pp. 117–142. https://doi.org/10.5334/jcaa.107.
- Singla S., Eldawy A.: Raptor Zonal Statistics: Fully distributed zonal statistics of big raster + vector data, [in:] 2020 IEEE International Conference on Big Data (Big Data), IEEE, 2020, pp. 571–580. https://doi.org/10.1109/BigData50022.2020.9377907.
- Lovelace R., Tennekes M., Carlino D.: ClockBoard: A zoning system for urban analysis. Journal of Spatial Information Science, no. 24, 2022, pp. 63–85. https://doi.org/10.5311/JOSIS.2022.24.172.
- Koktavá N., Horák J.: Options for micro-mobility data visualization. European Journal of Geography, vol. 14(4), 2023, pp. 46–52. https://doi.org/10.48088/ejg.n.kok.14.4.046.052.
- Nurhaci D.S., Setianto A., Wilopo W.: Analysis and evaluation of earthquake hazard zones based on spatial models for regency regional development Bantul. IOP Conference Series: Earth and Environmental Science, vol. 1373(1), 2024, 012014. https://doi.org/10.1088/1755-1315/1373/1/012014.
- Ambarwulan W., Nahib I., Widiatmaka W., Dewi R.S., Munajati S.L., Suwarno Y., Sutrisno D., Suprajaka S.: Delineating suitable site for settlement in potential earthquake vulnerable areas using spatial multi-criteria decision analysis in the Sukabumi regency, Indonesia. Journal of Water and Land Development, no. 53, 2022, pp. 10–21. https://doi.org/10.24425/jwld.2022.140775.
- Ningrum R.W., Fauzi H., Aswan M., Suryanto W., Mei E.T.W.: Analysis of physical vulnerability assessment due to 2015 swarm earthquake based on amplification zone in Jailolo District, [in:] 5th International Conference on Food, Agriculture and Natural Resources (FANRes 2019), Atlantis Press, 2020, pp. 306–310. https://doi.org/10.2991/aer.k.200325.060.
- Fadli A., Priyambodo T.K., Putra A.E., Suryanto W.: Kernel density estimation for seismic hazard mapping in Indonesia: Influence of kernel function, bandwidth size, and grid resolution. Trends in Sciences, vol. 22(8), 2025, 10064. https://doi.org/10.48048/tis.2025.10064.
- Han S., Liu B., Yang J., Feng T., Luo J., Zhou Z., Gong H.: Impact assessment of the effects of strong earthquake-induced hazards on the socioeconomic development level of earthquake-stricken areas after the 2008 Wenchuan earthquake. Mobile Information Systems, vol. 2022(1), 2022, 1695637. https://doi.org/10.1155/2022/1695637.
- Xu C., Du X., Yan L., Fan X.: LION: Spatiotemporal data fusion model for nighttime light, [in:] IGARSS 2024 – 2024 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2024, pp. 7907–7910. https://doi.org/10.1109/IGARSS53475.2024.10641673.
- Guo W., Zhang J., Zhao X., Li Y., Liu J., Sun W., Fan D.: Combining Luojia1-01 nighttime light and points-of-interest data for fine mapping of population spatialization based on the zonal classification method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, 2023, pp. 1589–1600. https://doi.org/10.1109/JSTARS.2023.3238188.
- Dutta D., Rahman A., Paul S.K., Kundu A.: Estimating urban growth in peri-urban areas and its interrelationships with built-up density using earth observation datasets. The Annals of Regional Science, vol. 65(1), 2020, pp. 67–82. https://doi.org/10.1007/s00168-020-00974-8.
- Aburas M.M., Ho Y.M., Ramli M.F., Ash’aari Z.H.: Monitoring and assessment of urban growth patterns using spatio-temporal built-up area analysis. Environmental Monitoring and Assessment, vol. 190(3), 2018, 156. https://doi.org/10.1007/s10661-018-6522-9.
- Zhou D., Li Z., Wang S., Tian Y., Zhang Y., Jiang G.: How does the newly urban residential built-up density differ across Chinese cities under rapid urban expansion? Evidence from residential FAR and statistical data from 2007 to 2016. Land Use Policy, vol. 104, 2021, 105365. https://doi.org/10.1016/j.landusepol.2021.105365.
- Shahfahad S., Mourya M., Kumari B., Tayyab M., Paarcha A., Asif A., Rahman A.: Indices based assessment of built-up density and urban expansion of fast growing Surat city using multi-temporal Landsat data sets. GeoJournal, vol. 86(4), 2021, pp. 1607–1623. https://doi.org/10.1007/s10708-020-10148-w.
- Mustafa A., Van Rompaey A., Cools M., Saadi I., Teller J.: Addressing the determinants of built-up expansion and densification processes at the regional scale. Urban Studies, vol. 55(15), 2018, pp. 3279–3298. https://doi.org/10.1177/0042098017749176.
- Muntafi Y., Nojima N., Jamal A.U.: Damage probability assessment of hospital buildings in Yogyakarta, Indonesia as an essential facility due to an earthquake scenario. Journal of the Civil Engineering Forum, vol. 6(3), 2020, pp. 225–236. https://doi.org/10.22146/jcef.53387.
- Kurniati D., Nurhidayatullah E.F., Hasibuan S.A.R.S.: Rapid assessment of earthquake threat vulnerability in Campus 3 of the University of Technology Yogyakarta based on an Android application. International Journal of Engineering Technology and Natural Sciences, vol. 4(2), 2022, pp. 119–127. https://doi.org/10.46923/ijets.v4i2.178.
- Yunizar D.K., Ricardo D.: Post earthquake house reconstruction management based on community participation of Monggang Srihardono Pundong village of Bantul city, Yogyakarta. IOP Conference Series: Earth and Environmental Science, vol. 1404, 2024, 012048. https://doi.org/10.1088/1755-1315/1404/1/012048.
- Widiyantoro S., Gunawan E., Muhari A., Rawlinson N., Mori J., Hanifa N.R., Susilo S., Supendi P., Shiddiqi H.A., Nugraha A.D., Putra H.E.: Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java, Indonesia. Scientific Reports, vol. 10, 2020, 15274. https://doi.org/10.1038/s41598-020-72142-z.
- Supendi P., Widiyantoro S., Rawlinson N., Yatimantoro T., Muhari A., Hanifa N.R., Gunawan E., Shiddiqi H.A., Imran I., Anugrah S.D., Daryono D., Prayitno B.S., Adi S.P., Karnawati D., Faizal L., Damanik R.: On the potential for megathrust earthquakes and tsunamis off the southern coast of West Java and southeast Sumatra, Indonesia. Natural Hazards, vol. 116(1), 2023, pp. 1315–1328. https://doi.org/10.1007/s11069-022-05696-y.
- Megawati M., Ma K., Chen P., Sianipar D., Hsieh M.: Source characterisation of intermediate-depth earthquakes in southern Java, Indonesia. Journal of Asian Earth Sciences, vol. 264, 2024, 106040. https://doi.org/10.1016/j.jseaes.2024.106040.
- Grevemeyer I., Tiwari V.M.: Overriding plate controls spatial distribution of megathrust earthquakes in the Sunda–Andaman subduction zone. Earth and Planetary Science Letters, vol. 251(3–4), 2006, pp. 199–208. https://doi.org/10.1016/j.epsl.2006.08.021.
- Koulali A., McClusky S., Cummins P., Tregoning P.: Wedge geometry, frictional properties and interseismic coupling of the Java megathrust. Tectonophysics, vol. 734–735, 2018, pp. 89–95. https://doi.org/10.1016/j.tecto.2018.03.012.
References
Erdik M.: Urban earthquake risk, [in:] Geohazards, ECI Symposium Series, 2006, ECI Digital Archives. https://dc.engconfintl.org/geohazards/17 [access: October 26, 2024].
Giovinazzi S., Marchili C., Pietro A.D., Giordano L., Costanzo A., Porta L.L., Pollino M., Rosato V., Lückerath D., Milde K., Ullrich O.: Assessing earthquake impacts and monitoring resilience of historic areas: Methods for GIS tools. ISPRS International Journal of Geo-Information, vol. 10(7), 461. https://doi.org/10.3390/ijgi10070461 2021.
Ao Y., Zhang H., Yang L., Wang Y., Martek I., Wang G.: Impacts of earthquake knowledge and risk perception on earthquake preparedness of rural residents. Natural Hazards, vol. 107, 2021, pp. 1287–1310. https://doi.org/10.1007/s11069-021-04632-w.
Ehrlich D., Melchiorri M., Florczyk A.J., Pesaresi M., Kemper T., Corbane C., Freire S., Schiavina M., Siragusa A.: Remote sensing derived built-up area and population density to quantify global exposure to five natural hazards over time. Remote Sensing, vol. 10(9), 2018, 1378. https://doi.org/10.3390/rs10091378.
Ehrlich D., Kemper T., Pesaresi M., Corbane C.: Built-up area and population density: Two essential societal variables to address climate hazard impact. Environmental Science & Policy, vol. 90, 2018, pp. 73–82. https://doi.org/10.1016/j.envsci.2018.10.001.
Chen Y., Xie W., Xu X.: Changes of population, built-up land, and cropland exposure to natural hazards in China from 1995 to 2015. International Journal of Disaster Risk Science, vol. 10(4), 2019, pp. 557–572. https://doi.org/10.1007/s13753-019-00242-0.
Bostenaru Dan M., Armaş I., Goretti A.: Earthquake hazard impact and urban planning – an introduction, [in:] Bostenaru Dan M., Armaş I., Goretti A. (eds.), Earthquake Hazard Impact and Urban Planning, Environmental Hazards, Springer, Dordrecht 2014, pp. 1–12. https://doi.org/10.1007/978-94-007-7981-5_1.
Motamed H., Ghafory-Ashtiany M., Amini-Hosseini K., Mansouri B., Khazai B.: Earthquake risk-sensitive model for urban land use planning. Natural Hazards, vol. 103(1), 2020, pp. 87–102. https://doi.org/10.1007/s11069-020-03960-7.
Kodag S., Mani S.K., Balamurugan G., Bera S.: Earthquake and flood resilience through spatial planning in the complex urban system. Progress in Disaster Science, vol. 14, 2022, pp. 100219. https://doi.org/10.1016/j.pdisas.2022.100219.
Tudes S.: Correlation between geology, earthquake and urban planning, [in:] D’Amico S. (ed.), Earthquake Research and Analysis: Statistical Studies, Observations and Planning, InTech, Rijeka 2012, pp. 417–434.
Mileu N., Queirós M.: Integrating risk assessment into spatial planning: RiskOTe decision support system. ISPRS International Journal of Geo-Information, vol. 7(5), 2018, 184. https://doi.org/10.3390/ijgi7050184.
Barua U., Islam I., Ansary M.A.: Integration of earthquake risk-sensitivity into landuse planning: An approach for a local level area at development phase. International Journal of Disaster Risk Reduction, vol. 50, 2020, 101836. https://doi.org/10.1016/j.ijdrr.2020.101836.
Xu S., Dimasaka J., Wald D.J., Noh H.Y.: Seismic multi-hazard and impact estimation via causal inference from satellite imagery. Nature Communications, vol. 13(1), 2022, 7793. https://doi.org/10.1038/s41467-022-35418-8.
Li X., Bürgi P.M., Ma W., Noh H.Y., Wald D.J., Xu S.: Disasternet: Causal Bayesian networks with normalizing flows for cascading hazards estimation from satellite imagery, [in:] KDD 23: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York 2023, pp. 4391–4403. https://doi.org/10.1145/3580305.3599807.
Xu S., Dimasaka J., Wald D.J., Noh H.Y.: Bayesian updating of seismic ground failure estimates via causal graphical models and satellite imagery. arXiv, 2022. https://doi.org/10.48550/arXiv.2204.07653.
Williams J.G., Rosser N.J., Kincey M.E., Benjamin J., Oven K.J., Densmore A.L., Milledge D.G., Robinson T.R., Jordan C.A., Dijkstra T.A.: Satellite-based emergency mapping using optical imagery: Experience and reflections from the 2015 Nepal earthquakes. Natural Hazards and Earth System Sciences, vol. 18(1), 2018, pp. 185–205. https://doi.org/10.5194/nhess-18-185-2018.
Habibie M.I., Purwono N.: Identification of socio-economic activities as urban growth based on nighttime light data (study on kendal district-indonesia), [in:] 2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), IEEE, 2022, pp. 169–173. https://doi.org/10.1109/AGERS56232.2022.10093456.
Jiang S., Wei G., Zhang Z., Wang Y., Xu M., Wang Q., Das P., Liu B.: Detecting the dynamics of urban growth in Africa using DMSP/OLS nighttime light data. Land, vol. 10(1), 2020, 13. https://doi.org/10.3390/land10010013.
Yu T., Liu C., Li W., Huang W., Wu H., Fan Z.: Characterizing urban actively populated area growth in the Yangtze River Delta using nighttime light data. International Journal of Applied Earth Observation and Geoinformation, vol. 129, 2024, 103857. https://doi.org/10.1016/j.jag.2024.103857.
Liu L., Wu W., Bai X., Shang W.: Spatio-temporal evolution, internal diversity, and driving factors of economy of Guanzhong Plain urban agglomeration in Northwestern China based on nighttime light data. Land, vol. 13(12), 2024, 2093. https://doi.org/10.3390/land13122093.
Tian H., Liu Y., Tian Y., Jing Y., Liu S., Liu X., Zhang Y.: Advances in the use of nighttime light data to monitor and assess coastal fisheries under the impacts of human activities and climate and environmental changes: A case study in the Beibu Gulf. Marine Policy, vol. 144, 2022, 105227. https://doi.org/10.1016/j.marpol.2022.105227.
Määttä I., Ferreira T., Leßmann C.: Nighttime lights and wealth in very small areas. Review of Regional Research, vol. 42(2), 2022, pp. 161–190. https://doi.org/10.1007/s10037-021-00159-6.
Wang L., Li Z., Han J., Fan K., Chen Y., Wang J., Fu J.: A cost-effective earthquake disaster assessment model for power systems based on nighttime light information. Applied Sciences, vol. 14(6), 2024, 2325. https://doi.org/10.3390/app14062325.
Pan Y., Jiang L., Wang J., Ma J., Bao S., Lin Y., Shi K.: Mapping and evaluating spatiotemporal patterns of urban expansion in global earthquake-affected areas: A nighttime light remote sensing perspective. International Journal of Digital Earth,vol.17(1),2024,2419938.https://doi.org/10.1080/17538947.2024.2419938.
Liu Z., Zhang J., Li X., Chen X.: Long-term resilience curve analysis of Wenchuan earthquake-affected counties using DMSP-OLS nighttime light images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, 2021, pp. 10854–10874. https://doi.org/10.1109/JSTARS.2021.3121789.
Li X., Liu Z., Chen X., Meng Q.: Assessment of the impact of the 2010 Haiti earthquake on human activity based on DMSP/OLS time series nighttime light data. Journal of Applied Remote Sensing, vol. 13(4), 2019, 044515. https://doi.org/10.1117/1.JRS.13.044515.
Xiao Z., Pan Y., Jiang L., Wang Z., Shi K.: Remote sensing nighttime lights reveal the post-earthquake losses and reconstruction situations in Turkey–Syria earthquake areas. IEEE Geoscience and Remote Sensing Letters, vol. 21, 2024, 3002405. https://doi.org/10.1109/LGRS.2024.3397864.
Zhang D., Huang H., Roy N., Roozbahani M.M., Frost J.D.: Black marble nighttime light data for disaster damage assessment. Remote Sensing, vol. 15(17), 2023, 4257. https://doi.org/10.3390/rs15174257.
Chanief A.Z., Yola L.: Analysis of urban mobility patterns in Jakarta city during pandemic Covid-19, [in:] Nia E.M., Awang M., Aulady M.F.N., Traykova M., Yola L. (eds.), Selected Articles from the 8th International Conference on Architecture and Civil Engineering: ICACE 2024, 12–13 December, Penang, Malaysia, Lecture Notes in Civil Engineering, vol. 635, Springer, Singapore 2025, pp. 304–310. https://doi.org/10.1007/978-981-96-5654-7_30.
Alders W.: Open-access archaeological predictive modeling using zonal statistics: A case study from Zanzibar, Tanzania. Journal of Computer Applications in Archaeology, vol. 6(1), 2023, pp. 117–142. https://doi.org/10.5334/jcaa.107.
Pambudi N.A.: Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy. Renewable and Sustainable Energy Reviews, vol. 81(2), 2018, pp. 2893–2901. https://doi.org/10.1016/j.rser.2017.06.096.
Cummins P.R., Pranantyo I.R., Pownall J.M., Griffin J.D., Meilano I., Zhao S.: Earthquakes and tsunamis caused by low-angle normal faulting in the Banda Sea, Indonesia. Nature Geoscience, vol. 13, 2020, pp. 312–318. https://doi.org/10.1038/s41561-020-0545-x.
Masum M., Akbar M.A.: The Pacific Ring of Fire is working as a home country of geothermal resources in the world. IOP Conference Series: Earth and Environmental Science, vol. 249, 2019, 012020. https://doi.org/10.1088/1755-1315/249/1/012020.
Chelminski K.: Harnessing the Ring of Fire: Political Economy of Clean Energy Development Finance on Geothermal Development in Indonesia and the Philippines. Energy Policy Research Group, University of Cambridge, 2018. http://www.jstor.org/stable/resrep30435 [access: October 26, 2024].
Fuady M., Munadi R., Fuady M.A.K.: Disaster mitigation in Indonesia: Between plans and reality. IOP Conference Series: Materials Science and Engineering, vol. 1087, 2021, 012011. https://doi.org/10.1088/1757-899X/1087/1/012011.
Pribadi K.S., Kusumastuti D., Sagala S.A.H., Wimbardana R.: Post-disaster housing reconstruction in Indonesia: Review and lessons from Aceh, Yogyakarta, West Java and West Sumatera earthquakes, [in:] Shaw R. (ed.), Disaster Recovery: Disaster Risk Reduction, Springer, Tokyo 2014, pp. 197–223. https://doi.org/10.1007/978-4-431-54255-1.
Kusumasari B., Alam Q.: Local wisdom-based disaster recovery model in Indonesia. Disaster Prevention and Management, vol. 21(3), 2012, pp. 351–369. https://doi.org/10.1108/09653561211234525.
BPS-Statistics of Yogyakarta Municipality: Yogyakarta Municipality in Figures 2024. 2024. https://jogjakota.bps.go.id/en/publication/2024/02/28/6a6d984e3d10d2113c9d3f3b/yogyakarta-municipality-in-figures-2024.html [access: October 26, 2024].
BPS-Statistics of DI Yogyakarta Province: Growth Rate of Population by Regency/Municipality, 1971–2020 (persen/year ). 2024. https://yogyakarta.bps.go.id/en/statistics-table/1/MTY4IzE=/growth-rate-of-population-by-regency-municipality--1971-2020--persen-year-.html [access: October 26, 2024].
BPS-Statistics of Bantul Regency: Bantul Regency in Figures 2023. 2023. https://bantulkab.bps.go.id/en/publication/2023/02/28/e90ab2b5613a5bd94f524fcb/kabupaten-bantul-dalam-angka-2023.html [access: October 26, 2024].
Disaster Management Agency of Yogyakarta Municipality: Kajian risiko bencana kota Yogyakarta 2022–2026 [Disaster risk assessment of Yogyakarta city for 2022–2026]. Yogyakarta, 2022. https://bpbd.jogjakota.go.id/assets/instansi/bpbd/files/dokmen-kajian-risiko-bencana-kota-yogyakarta-2022-2026-13325.pdf [access: October 26, 2024].
Sulistiyana A.: Duka dari bumi Projotamansari: Arsip korban gempa bumi 2006 di Bantul [Grief from the land of Projotamansari: Archive of the victims of the 2006 earthquake in Bantul]. Bantul Library and Archive Agency, Bantul 2018. https://perpusda.bantulkab.go.id/pc/59323#pablo [access: October 26, 2024].
National Center for Earthquake Studies: Peta Sumber Dan Bahaya Gempa Indonesia Tahun 2017 [Map of Indonesian earthquake hazard and source in 2017]. https://luk.staff.ugm.ac.id/gempa/pdf/Pusgen2017PetaGempaIndonesia.pdf [access: October 26, 2024].
Widjajanti N., Nata B., Parseno P.: Displacement velocity and strain analysis of Opak Fault monitoring stations. IOP Conference Series: Earth and Environmental Science, vol. 936, 2021, 012042. https://doi.org/10.1088/1755-1315/936/1/012042.
Abidin H.Z., Andreas H., Meilano I., Gamal M., Gumilar I., Abdullah C.I.: Deformasi koseismik dan pascaseismik gempa Yogyakarta 2006 dari hasil survei GPS. Indonesian Journal on Geoscience, vol. 4(4), 2009, pp. 275–284. https://doi.org/10.17014/ijog.4.4.275-284.
Steinritz V., Pena-Castellnou S., Marliyani G.I., Reicherter K.: GIS-based study of tsunami risk in the Special Region of Yogyakarta (Central Java, Indonesia). IOP Conference Series: Earth and Environmental Science, vol. 851, 2021, 012007. https://doi.org/10.1088/1755-1315/851/1/012007.
Tsuji T., Yamamoto K., Matsuoka T., Yamada Y., Onishi K., Bahar A., Meilano I., Abidin H.Z.: Earthquake fault of the 26 May 2006 Yogyakarta earthquake observed by SAR interferometry. Earth, Planet and Space, vol. 61(7), 2009, pp. e29–e32. https://doi.org/10.1186/BF03353189.
Yuan Y., Chen Z.: The impacts of land cover spatial combination on nighttime light intensity in 2010 and 2020: A case study of Fuzhou, China. Computer Urban Science, vol. 3(1), 2023. https://doi.org/10.1007/s43762-023-00077-y.
Ma T., Zhou Y., Zhou C., Haynie S., Pei T., Xu T.: Night-time light derived estimation of spatio-temporal characteristics of urbanisation dynamics using DMSP/ OLS satellite data. Remote Sensing of Environment, vol. 158, 2015, pp. 453–464. https://doi.org/10.1016/j.rse.2014.11.022.
Cao C., De Luccia F.J., Xiong X., Wolfe R., Weng F.: Early on-orbit performance of the Visible Infrared Imaging Radiometer Suite onboard the Suomi National PolarOrbiting Partnership (S-NPP) satellite. IEEE Transactions on Geoscience and Remote Sensing, vol. 52(2), 2014, pp. 1142–1156. https://doi.org/10.1109/TGRS.2013.2247768.
Csiszar I., Schroeder W., Giglio L., Ellicott E., Vadrevu K.P., Justice C.O., Wind B.: Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results. Journal of Geophysical Research: Atmospheres, vol. 119(2), 2014, pp. 803–816. https://doi.org/10.1002/2013jd020453.
Elvidge C.D., Zhizhin M., Baugh K., Hsu F.C., Ghosh T.: Methods for global survey of natural gas flaring from Visible Infrared Imaging Radiometer Suite data. Energies, vol. 9(1), 2016. https://doi.org/10.3390/en9010014.
Trishchenko A.P.: Clear-sky composites over Canada from Visible Infrared Imaging Radiometer Suite: Continuing MODIS time series into the future. Canadian Journal of Remote Sensing, vol. 45(3–4), 2019, pp. 276–289. https://doi.org/10.1080/07038992.2019.1601006.
Miller S.D., Straka W. III., Mills S.P., Elvidge C.D., Lee T.F., Solbrig J., Walther A., Heidinger A.K., Weiss S.C.: Illuminating the capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sensing, vol. 5(12), 2013, pp. 6717–6766. https://doi.org/10.3390/rs5126717.
Seaman C., Hillger D.W., Kopp T.J., Williams R., Miller S., Lindsey D.: Visible Infrared Imaging Radiometer Suite (VIIRS) Imagery Environmental Data Record (EDR) user’s guide. U.S. Department of Commerce National Oceanic and Atmospheric Administration, Washington 2015. http://doi.org/10.7289/V5/TR-NESDIS-150.
Eplee R.E., Turpie K.R., Meister G., Patt F.S., Franz B.A., Bailey S.W.: On-orbit calibration of the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite for ocean colour applications. Applied Optics, vol. 54(8), 2015, pp. 1984–2006. https://doi.org/10.1364/ao.54.001984.
Guillevic P.C., Biard J.C., Hulley G.C., Privette J.L., Hook S.J., Olioso A., Göttsche F.M., Radocinski R., Román M.O., Yu Y., Csiszar I.: Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sensing of Environment, vol. 154, 2014, pp. 19–37. https://doi.org/10.1016/j.rse.2014.08.013.
Setiawan Y., Kustiyo K., Hudjimartsu S.A., Purwanto J., Rovani R., Tosiani A., Usman A.B., Kartika T., Indriasari N., Prasetyo L.B., Margono B.A.: Evaluating Visible-Infrared Imaging Radiometer Suite imagery for developing nearreal-time nationwide vegetation cover monitoring in Indonesia. Remote Sensing, vol. 16(11), 2024, 1958. https://doi.org/10.3390/rs16111958.
Falchi F., Cinzano P., Duriscoe D., Kyba C.C., Elvidge C.D., Baugh K., Portnov B.A., Rybnikova N.A., Furgoni R.: The new world atlas of artificial night sky brightness. Science Advances, vol. 2(6), 2016, e1600377. http://doi.org/10.1126/sciadv.1600377.
Yang Y., Zhao C., Sun L., Wei J.: Improved aerosol retrievals over complex regions using NPP Visible Infrared Imaging Radiometer Suite observations. Earth and Space Science, vol. 6(4), 2019, pp. 629–645. https://doi.org/10.1029/2019EA000574.
Li P., Xiao C., Feng Z., Li W., Zhang X.: Occurrence frequencies and regional variations in Visible Infrared Imaging Radiometer Suite (VIIRS) global active fires. Global Change Biology, vol. 26(5), 2020, pp. 2970–2987. https://doi.org/10.1111/gcb.15034.
Flenniken J.M., Stuglik S., Iannone B.V.: Quantum GIS (QGIS): An introduction to a free alternative to more costly GIS platforms: FOR359/FR428, 2/2020. EDIS, vol. 2020(2), 2020. https://doi.org/10.32473/edis-fr428-2020.
Novo A., Garrido I., Lorenzo H., Arias P.: Use of geographic information systems (GIS) in higher education: Practical geomatics applications with Quantum GIS software, [in:] 2022 International Symposium on Computers in Education (SIIE), IEEE, 2022, pp. 1–6. https://doi.org/10.1109/SIIE56031.2022.9982364.
Alders W.: Open-access archaeological predictive modelling using zonal statistics: A case study from Zanzibar, Tanzania. Journal of Computer Applications in Archaeology, vol. 6(1), 2023, pp. 117–142. https://doi.org/10.5334/jcaa.107.
Singla S., Eldawy A.: Raptor Zonal Statistics: Fully distributed zonal statistics of big raster + vector data, [in:] 2020 IEEE International Conference on Big Data (Big Data), IEEE, 2020, pp. 571–580. https://doi.org/10.1109/BigData50022.2020.9377907.
Lovelace R., Tennekes M., Carlino D.: ClockBoard: A zoning system for urban analysis. Journal of Spatial Information Science, no. 24, 2022, pp. 63–85. https://doi.org/10.5311/JOSIS.2022.24.172.
Koktavá N., Horák J.: Options for micro-mobility data visualization. European Journal of Geography, vol. 14(4), 2023, pp. 46–52. https://doi.org/10.48088/ejg.n.kok.14.4.046.052.
Nurhaci D.S., Setianto A., Wilopo W.: Analysis and evaluation of earthquake hazard zones based on spatial models for regency regional development Bantul. IOP Conference Series: Earth and Environmental Science, vol. 1373(1), 2024, 012014. https://doi.org/10.1088/1755-1315/1373/1/012014.
Ambarwulan W., Nahib I., Widiatmaka W., Dewi R.S., Munajati S.L., Suwarno Y., Sutrisno D., Suprajaka S.: Delineating suitable site for settlement in potential earthquake vulnerable areas using spatial multi-criteria decision analysis in the Sukabumi regency, Indonesia. Journal of Water and Land Development, no. 53, 2022, pp. 10–21. https://doi.org/10.24425/jwld.2022.140775.
Ningrum R.W., Fauzi H., Aswan M., Suryanto W., Mei E.T.W.: Analysis of physical vulnerability assessment due to 2015 swarm earthquake based on amplification zone in Jailolo District, [in:] 5th International Conference on Food, Agriculture and Natural Resources (FANRes 2019), Atlantis Press, 2020, pp. 306–310. https://doi.org/10.2991/aer.k.200325.060.
Fadli A., Priyambodo T.K., Putra A.E., Suryanto W.: Kernel density estimation for seismic hazard mapping in Indonesia: Influence of kernel function, bandwidth size, and grid resolution. Trends in Sciences, vol. 22(8), 2025, 10064. https://doi.org/10.48048/tis.2025.10064.
Han S., Liu B., Yang J., Feng T., Luo J., Zhou Z., Gong H.: Impact assessment of the effects of strong earthquake-induced hazards on the socioeconomic development level of earthquake-stricken areas after the 2008 Wenchuan earthquake. Mobile Information Systems, vol. 2022(1), 2022, 1695637. https://doi.org/10.1155/2022/1695637.
Xu C., Du X., Yan L., Fan X.: LION: Spatiotemporal data fusion model for nighttime light, [in:] IGARSS 2024 – 2024 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2024, pp. 7907–7910. https://doi.org/10.1109/IGARSS53475.2024.10641673.
Guo W., Zhang J., Zhao X., Li Y., Liu J., Sun W., Fan D.: Combining Luojia1-01 nighttime light and points-of-interest data for fine mapping of population spatialization based on the zonal classification method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, 2023, pp. 1589–1600. https://doi.org/10.1109/JSTARS.2023.3238188.
Dutta D., Rahman A., Paul S.K., Kundu A.: Estimating urban growth in peri-urban areas and its interrelationships with built-up density using earth observation datasets. The Annals of Regional Science, vol. 65(1), 2020, pp. 67–82. https://doi.org/10.1007/s00168-020-00974-8.
Aburas M.M., Ho Y.M., Ramli M.F., Ash’aari Z.H.: Monitoring and assessment of urban growth patterns using spatio-temporal built-up area analysis. Environmental Monitoring and Assessment, vol. 190(3), 2018, 156. https://doi.org/10.1007/s10661-018-6522-9.
Zhou D., Li Z., Wang S., Tian Y., Zhang Y., Jiang G.: How does the newly urban residential built-up density differ across Chinese cities under rapid urban expansion? Evidence from residential FAR and statistical data from 2007 to 2016. Land Use Policy, vol. 104, 2021, 105365. https://doi.org/10.1016/j.landusepol.2021.105365.
Shahfahad S., Mourya M., Kumari B., Tayyab M., Paarcha A., Asif A., Rahman A.: Indices based assessment of built-up density and urban expansion of fast growing Surat city using multi-temporal Landsat data sets. GeoJournal, vol. 86(4), 2021, pp. 1607–1623. https://doi.org/10.1007/s10708-020-10148-w.
Mustafa A., Van Rompaey A., Cools M., Saadi I., Teller J.: Addressing the determinants of built-up expansion and densification processes at the regional scale. Urban Studies, vol. 55(15), 2018, pp. 3279–3298. https://doi.org/10.1177/0042098017749176.
Muntafi Y., Nojima N., Jamal A.U.: Damage probability assessment of hospital buildings in Yogyakarta, Indonesia as an essential facility due to an earthquake scenario. Journal of the Civil Engineering Forum, vol. 6(3), 2020, pp. 225–236. https://doi.org/10.22146/jcef.53387.
Kurniati D., Nurhidayatullah E.F., Hasibuan S.A.R.S.: Rapid assessment of earthquake threat vulnerability in Campus 3 of the University of Technology Yogyakarta based on an Android application. International Journal of Engineering Technology and Natural Sciences, vol. 4(2), 2022, pp. 119–127. https://doi.org/10.46923/ijets.v4i2.178.
Yunizar D.K., Ricardo D.: Post earthquake house reconstruction management based on community participation of Monggang Srihardono Pundong village of Bantul city, Yogyakarta. IOP Conference Series: Earth and Environmental Science, vol. 1404, 2024, 012048. https://doi.org/10.1088/1755-1315/1404/1/012048.
Widiyantoro S., Gunawan E., Muhari A., Rawlinson N., Mori J., Hanifa N.R., Susilo S., Supendi P., Shiddiqi H.A., Nugraha A.D., Putra H.E.: Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java, Indonesia. Scientific Reports, vol. 10, 2020, 15274. https://doi.org/10.1038/s41598-020-72142-z.
Supendi P., Widiyantoro S., Rawlinson N., Yatimantoro T., Muhari A., Hanifa N.R., Gunawan E., Shiddiqi H.A., Imran I., Anugrah S.D., Daryono D., Prayitno B.S., Adi S.P., Karnawati D., Faizal L., Damanik R.: On the potential for megathrust earthquakes and tsunamis off the southern coast of West Java and southeast Sumatra, Indonesia. Natural Hazards, vol. 116(1), 2023, pp. 1315–1328. https://doi.org/10.1007/s11069-022-05696-y.
Megawati M., Ma K., Chen P., Sianipar D., Hsieh M.: Source characterisation of intermediate-depth earthquakes in southern Java, Indonesia. Journal of Asian Earth Sciences, vol. 264, 2024, 106040. https://doi.org/10.1016/j.jseaes.2024.106040.
Grevemeyer I., Tiwari V.M.: Overriding plate controls spatial distribution of megathrust earthquakes in the Sunda–Andaman subduction zone. Earth and Planetary Science Letters, vol. 251(3–4), 2006, pp. 199–208. https://doi.org/10.1016/j.epsl.2006.08.021.
Koulali A., McClusky S., Cummins P., Tregoning P.: Wedge geometry, frictional properties and interseismic coupling of the Java megathrust. Tectonophysics, vol. 734–735, 2018, pp. 89–95. https://doi.org/10.1016/j.tecto.2018.03.012.