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Abstract:	 The interconnected porosity of soil provides conduit channels for the down-
ward infiltration of water into the subsurface; this occurs in soil layers and 
within soil-less areas or geologic formations. The lithology and geological 
structure significantly influence the infiltration capacity of soils and are crucial 
in determining whether the infiltration water continuously reaches an aquifer 
or becomes stagnant in the saturated soil. An artificial neural network (ANN) 
algorithm was employed to model the actual infiltration rate, incorporating 
soil texture and soil moisture along with geological scores as inputs and ac-
tual infiltration rates as outputs. This study aimed to quantify qualitative geo-
logical data and incorporate it into ANN model parameters. The development 
of the ANN infiltration model involved two serial trial-and-error experiments 
to determine the optimal number of nodes in the hidden layer, ranging from 
nodes  c(4,2) to  c(12,2), one serial experiment with geological input, and the 
other without geological input. Throughout the model testing, metrics such 
as MAE, RMSE, and MSE were recorded, and the first and second optimum 
models were identified when employing c(9,2) nodes of hidden layers. The re-
sulting model can be used to predict actual infiltration and will be beneficial for 
hydrometeorological-disaster mitigation and city-development planning.
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1.	 Introduction

Infiltration is governed by interconnected pores within soil; these are created pri-
marily by the spacing between the grain packing, soil cracks, and soil piping [1]. Within 
the soil, water infiltrates and fills in these pores. Continuous infiltration leads to satu-
rated soil; if the infiltrating water reaches the underlying strata, the physical properties 
of this stratum become crucial in maintaining a constant flow to recharge the aquifer. 
In contrast, infiltration cannot progress deeper if the underlying strata are aquicludes.

Infiltration is when water reaches the Earth’s surface, where some runs off and 
some infiltrates the soil. The rainfall and runoff correlation has been previously re-
searched and modeled as the R-R Model using the improvising ANN algorithm to 
obtain higher accuracy in prediction; the deep ANN model provides better results 
than the shallow ANN model does [2]. Previous studies have also revealed that soils 
with medium to low permeability, along with an underlying lithologic layer, causes 
water to infiltrate into the soil and flow horizontally [3].

Geology has never been used as a parameter in a machine-learning model, as 
it is characterized by qualitative descriptive data rather than quantitative data. The 
systematic literature review (which included 131 experimental and 22 theoretical arti-
cles selected from Scopus, ScienceDirect, and Google Scholar published between 1953 
and 2019) was meta-analyzed; none of these articles mentioned any geology terms or 
phrases in their titles or abstracts as affecting parameters in soil infiltration [4]. Such 
a literature review was also confirmed by other research results about the effects of 
soil physical properties and vegetation on soil-infiltration rates [5, 6]. Moreover, there 
is still a gap in the research and publications of the correlation between soil infiltration 
and geologic parameters; this gap can be filled by developing an accurate model of 
the correlation among infiltration geologic parameters combined with other influ-
encing parameters. Such an accurate infiltration model can be used to simulate and 
predict further work such as drainage planning, flood mitigation, and prevention.

Most residual soil profiles typically have limited depths, gradually transitioning 
downward to fresh lithology as part of a geological formation. Soil is absent in several 
areas, and geological formations are exposed on the region’s surface. Sedimentary 
rocks (including breccia and sandstone) possess textures that resemble those of the 
soil, and their porosities are formed through grain packing as well as structures like 
joints, cracks, and faults. Subsurface geologic conditions are essential for directing wa-
ter after its downward infiltration through soils, thus determining whether it will con-
tinuously move through the underlying strata [7] or flow parallel to the strata. Geolog-
ic faults significantly contribute to providing conduits in recharge areas [8]. Geologic 
formations also control water flows in the subsurface and surface runoffs on Earth [9].

The infiltration rate at a specific point on the surface determines whether rain-
water runoffs, soil moisture, and saturated soil near the surface will flow or move 
horizontally to avoid a geohydrologic barrier [10]; alternatively, the rainwater will 
be recharged in the free aquifer as groundwater [8]. A low infiltration rate and other 
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prevailing parameters on the surface play significant roles in flood disasters. More-
over, the high infiltration rate and subsurface parameters in recharge areas (such as 
lithology, structural geology, and hydrogeology) also play vital roles in storing the 
water in aquifers. Aquifer-recharge processes are mainly controlled by geological 
conditions such as faults, and water recharge typically results from streambed in-
filtration [8, 11]. A recharge area can be analyzed via geology and geophysics (such 
as through geological maps and cross-sections, seismic stacks, and geoelectric data). 
The recharge area’s location can also be traced using the elevation versus the δ18O 
and δ2H of the meteoric water isotope value [12]. In the soil, water infiltrates through 
the soil layer, moving both upward and downward due to heat and pressure. The 
capillary zone has been observed and studied in previous research [13, 14].

Nevertheless, there is a gap between the geology and the soil infiltration. The 
development of geologic control on the actual soil-infiltration model will fill the re-
cent research gap between infiltration and the geology parameters. Moreover, ob-
taining data on the soil-infiltration distribution in certain areas is crucial for provid-
ing information for sustainable groundwater management  [15], flood prevention, 
and regional development planning.

Hypothetically, each geological formation controls infiltration differently de-
pending on the geologic structure and lithologic variation that are associated with it; 
in geohydrologic systems, the combination of its lithology and geological structure 
can include an aquifer, aquitard, or aquifuge depending on the permeability [16]. 
The geologic conditions control infiltration directly when alluvial deposits, residual 
soil, and colluvium do not cover the area. In contrast, a geologic formation occurs 
beneath the soil; this indirectly controls the soil-infiltration rate. The research ques-
tion is how the underlying geologic formation controls the surface soil’s infiltration. 
This approach aims to determine the underlying geologic formation and geological 
structure that control the soil-infiltration rate at the surface.

2.	 Research Significance

The novelty of this research lies in the development of a soil-infiltration model 
that incorporates the quantifications of geologic parameters. Machine-learning mod-
els often overlook these parameters due to their qualitative and descriptive nature. 
This study addresses this research gap by emphasizing the roles of lithology and 
geologic structures on water infiltration. The findings of this research have potential 
applications in evaluating the influence of geologic features on runoff calculations 
and predictions. This study contributes to foundational knowledge in identifying re-
charge areas to conserve aquifers from pollution and drought. It can also be applied 
to flood-disaster management in the study area (where certain catchments are high-
ly prone to flooding). Conservation of soil infiltration during urban development 
emerges as a key strategy for flood mitigation [17]. Moreover, intense precipitation 
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combined with limited infiltration capacity in slope areas can trigger flood disas-
ters  [18] and landslides  [19]. Changes in infiltration affect the soil moisture, unit 
weight, and Atterberg limit of slope soils, ultimately increasing the risk of slope 
failure in vulnerable slopes.

3.	 Method

3.1.	 Study Area

The research commenced by choosing a location based on its geographical, hy-
drological, and geological considerations. The research area was a growing city that 
consisted of 508.39 km2 and was inhabited by 717,231 citizens. Administratively, it 
is part of Balikpapan City and East Kalimantan Province, Indonesia. The national 
location of the research area is vital, as it is the buffer area of the Indonesian New 
Capital City that needs solutions for the potential for hydrometeorological disasters 
and groundwater resources. There are a few river basins in the area, such as the 
Sepinggan, Ampal, and Wain River Basins; these river basins are characterized by 
flooding in some places during the rainy season [20].

Fig. 1. Research area (adapted from OSM)
Source: OpenStreetMap OSM
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The research area was located in Balikpapan City; physiographically, the city is 
located in the Kutei Basin [21] and administratively belongs to East Borneo Province, 
Indonesia (as shown in the location map in Figure 1). Geologically, three geological 
formations are extensively exposed on the surface: the Balikpapan Formation, Kam-
pungbaru Formation, and recent alluvial deposits [1, 17–20].

3.2.	 Data Collection and Geologic Quantification
Based on a literature review that was related to the soil, infiltration, and geol-

ogy of the research area, the soil, infiltration, and geologic data was available from 
previously published and unpublished research. The soil data consisted of soil mois-
ture and percentages of sand, silt, and clay; it was mostly obtained from a database 
of the Civil Engineering Department of Balikpapan State Polytechnics. Direct field 
and laboratory tests were required to be conducted in order to fill the data gap in 
the area. The in situ test consisted of a double-ring infiltrometer test, and the labo-
ratory tests consisted of soil water content as well as sieve and hydrometer tests. 
For interpretation and graphical presentation, the soil textures of the samples were 
classified using the USDA classification system. The geological data included a geo-
logical map of the area, which was published by the Indonesian Geological Agen-
cy, Ministry of Energy, and Mineral Resources (scale 1:100,000) [22], along with an 
unpublished report on the study geology that was attached to the geological map 
(scale 1:25,000) [25]. The geological map will be interpreted for its role in controlling 
the actual infiltration rate.

In this step, the available geological data on the lithology and geological struc-
ture were qualitative and quantified in tabular numerical format so that they could be 
read by machine learning. The numerical representation in the interpretation of a geo-
logical map is based on the domain of geological expertise [26]. In this research, the 
numerical values for both the lithological and geological structures were proposed 
in a scoring format that ranged from 0 to 5, with a rationalization to obtain higher 
scores; the lithology and geologic structures must give additional space as conduit 
channels that enable infiltration water to pass through spaces such as loose grain 
packing, intergrain spaces of clean sand, interconnected joints, and faults. Through 
this approach, the water infiltrates deep down. The lithologic scores were determined 
by the overall permeability of the geologic formation (which was made up of several 
lithologic units). When the formation consisted of massive intrusive igneous rock that 
could not store and was impermeable or an aquifuge or thick claystone and mud-
stone that could store but was impermeable and had a score of 0, the interbedding 
of claystone and other porous and permeable rocks could be scored as 1. Grains that 
were coarser than mud and clay had greater permeability [27] and had the potential 
to be an aquifer, such as sandstone, conglomerate, and breccia. The permeability of 
these lithologies can be scored as 2 through 5 depending on the permeability of the 
individual lithology; this was partially determined by the grain size. Such scoring was 
also based on the rank of the permeability of any common rocks [28].
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The quantification of the geologic features relied on geologic formation and 
structural interpretation using available geological maps. The quantification was 
conducted by scoring the lithology and geological structure that were visible on the 
geological map.

3.3.	 ANN’s Model Development and Assessment

This model development began with tabulating the data, which was headed by 
the actual infiltration rate [cm/h], soil moisture [%], sand [%], silt [%], clay [%], and 
geology. The data was normalized to avoid differences in the range of each column. 
The data was normalized using Equation (1), which is defined as follows:

	 −
=
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After normalization, the data was randomly split into  75%  for training 
and 25% for testing.

The next step involved modeling the relationships among the infiltration rate 
and the soil and geologic properties as inputs via the ANN algorithm using the ne-
uralnet library in R Studio. An ANN is an algorithm that simulates the human ner-
vous system; the system consists of artificially interconnected neurons (or nodes), and 
each node is weighted during training [29, 30]. The data processing occurs from the 
input layer to the hidden layer to the output layer, where the output (y) is defined by 
bias (b), aggregator (∑), input (x), and synaptic weights (w); these processes are gov-
erned by Equation (1). In this study, y represents the actual infiltration rate, and x1, x2, 
x3, x4, and x5 represent the soil moisture, sand, silt, clay, and geology, respectively:
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The model was developed in two scenarios to determine the role of geologic 
control. The first scenario was a model with input-normalized soil moisture, sand, 
silt, clay, and geology. Moreover, the hidden layer column nodes were set by trial and 
error, and the output layer consisted of the actual infiltration rate. The second scenar-
io was conducted similarly to the first, but the geologic parameters were excluded.

The prediction result of the model was then denormalized using Equation (3) 
as follows:

	 pred max min min)(y x x x x= ⋅ +− 	 (3)

where y  is the denormalized output, xpred  is the output of the model prediction, 
and xmax  and xmin represent the maximum and minimum of the actual infiltration 
data, respectively.
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The assessment of the ANN  model performance using standard statistical 
performance measurements consisted of the mean absolute error  (MAE), the root 
mean squared error  (RMSE), and the mean squared error  (MSE)  [31]. The opti-
mum results of training and testing the ANN model were based on comparisons of 
the MAE, RMSE, and MSE of each model simulation; the MAEs, RMSEs, and MSEs 
were calculated via Equations (4), (5), and (6), respectively. The last step involved 
analyzing the results of all of the modeling and the conclusions.
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The first and second optimum models were determined based on the small-
est MAE, RMSE, and MAE  levels. The prediction results of both of the optimum 
models were further analyzed and compared using scatter plots of the actual-
versus-predicted values to determine the roles of the geologic parameters in the soil 
infiltration.

4.	 Results

4.1.	 Geology and Soil Classes

The soil parameters included initial soil moisture and sand, silt, and clay per-
centages. Moreover, the geological properties of the lithology and structure were 
quantified. This research proposed the geologic scoring methods that are listed in 
Tables 1 and 2.

Table 1. Geologic formation in research area and proposed lithologic score

Geologic 
Formation Lithologic Description Proposed 

Score Rational

Alluvium 
deposits (Qa)

gravel, sand, clay, mud as deposition of 
river, delta, and beach

depends on 
underlying 
formation

recent deposition: serving 
like soils above erosion 
plane, some parts of 
alluvial deposit areas 
are wetland
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Geologic 
Formation Lithologic Description Proposed 

Score Rational

Kampungbaru 
(Tpkb)

sandy claystone, sand quartz, siltstone, 
coal interbed, limestone, and lignite 
in research area dominated by sandy 
claystone, very fine loose sand, and quartz

1

dominated by sandy 
claystone and siltstone, 
providing minimum 
interconnected pore space

Balikpapan 
(Tmbp)

research area is primarily dominated 
by sandstone, with alternating layers 
of marly clay, shale containing marl 
as interbed, limestone, and coal

2
dominated by sandstone, 
giving more interconnected 
intergrain pore space

Table 2. Geologic structures and proposed scores

Geologic Structure Proposed Score Rational

NA 0 no addition interconnected pore space in underlaying formation

Axis of syncline 0
in area of syncline axis, lithologic texture tended to have more 
dense grains, closed spaces, and compacted grains as result of 
past working stresses

Axis of anticline 1
in area of the anticline axis, will get more interconnected pore 
spaces, wider intergrain spaces, and even radial tension cracks 
in outer layer, as it had undergone strain

Joint/Fracture 2 joint or fracture will give extra interconnected space – both in 
permeable and impermeable strata

Fault 2
just like joint and fracture, faults also give deeper 
extra interconnected space – both in permeable 
and impermeable strata

The reason behind the geological interpretation judgment for the scoring of the 
geologic formations was as follows:

The Balikpapan Formation  (Tmbp) consisted of sandstone, marly clay, and 
shale alternately, with marl as the interbed, limestone, and coal. This formation in 
the research area was dominated by sandstone, which could be observed visually 
in many outcrops located in South Balikpapan. The sand was mainly fine to medi-
um in size; such lithology provides intergrain porosity as a conduit of infiltration 
water toward the groundwater table, so the lithology had better permeability than 
the overlying Formation of Kampungbaru  (Tpkb); thus, it was given a score of  2 
out  of  5. On the surface, the Balikpapan Formation acted as a recharge area and 
functioned as an aquifer in the subsurface. The Kampungbaru Formation consisted 
of sandy claystone, sand quartz, siltstone, coal interbeds, limestone, and lignite [22]. 
Part of the Kampungbaru Formation in the research area was dominated by sandy 
claystone and loose sand quartz that was very fine. The sandy claystone (which was 
the most lithological bed and was classified as semi-impermeable and impermeable 
with a score of 1) allowed the Kampungbaru Formation to function as an aquitard 

Table 1. cont.
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in hydrologic systems. Moreover, recent deposits of alluvium  (Qa) were deposit-
ed above parallel and angular unconformities or erosional plains; these deposits 
consisted of gravel, sand, clay, and mud that were deposited by rivers, deltas, and 
beaches [23, 25]. As loose materials and well-sorted deposits, these deposits were 
additionally treated like soil, and the underlying geologic formations were used to 
determine the lithologic score.

Based on a direct observation, the Balikpapan Formation was more resistant 
to decomposition and disintegration processes than the other formations, so it had 
less soil coverage – especially in the South Balikpapan District and Balikpapan City 
Center District. Otherwise, the Kampungbaru Formation had thicker soil due to in-
tense weathering. Based on the results of the sieve and hydrometer tests, 40 soil sam-
ples from the research area were found to be the dominant sand class (as depicted 
in Figure 2). Most of the samples from the Balikpapan Formation were categorized 
as a sand class. Moreover, the clay loam, sandy clay, and sandy loam classes were 
primarily associated with the Kampungbaru Formation. Alluvial deposits mostly 
overlaid the river and the southern line bank. This deposit stratigraphically overlaid 
the uppermost stratigraphic column of the area and was deposited above the uncon-
formity; thus, the alluvial deposits acted similarly to residual soil or colluvium in 
terms of the actual infiltration rate.

Fig. 2. Soil-texture classes of 40 samples

The scoring of geologic structures relied on the general interpretation of their 
natural lithologies (specifically for a monocline, which received a score of  0 be-
cause it was structural and did not contribute vertically to the waterway that passed 
through the formation). The syncline axis also provided no addition to the conduit 
even though its porosity tended to decrease as the grain packing became more 
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compacted; so, its geologic structure score was 0. Otherwise, the top layer of the 
lithology contained additional pore space on the axis of an anticline because it had 
experienced negative tension; so, the geologic structure score was  1. The infiltra-
tion in the soil increased the soil’s moisture and ultimately saturated it; after this, 
the water inside the soil became stagnant. As the soil moisture increased, the soil-
infiltration capacity decreased in parallel [32]. The infiltration characteristics of the 
saturated soil may have varied when the joints and faults existed beneath geological 
layers. The presence of the joints and faults gave extra conduit channels to the water 
that passed through geologic formations through channels that were under hydro-
dynamic infiltration pressure [33] through the aquifuge; when subjected, this water 
would serve as infiltration water passing through the barriers [34]. These conditions 
are illustrated in Figure 3; considering their addition to the conduits, these kinds 
of structures were scored as a 2. A summary of the proposed scores for the geologic 
structures is listed in Table 2.

Fig. 3. The conceptual illustration of geological control on soil infiltration

The actual infiltration rate in the research area at 40 locations varied (as shown 
in the bar). This data represented the output variables in the ANN model. Moreover, 
the soil moisture, geologic score, and sand, silt, and clay contents are illustrated as 
colored lines; these values are treated as input variables. The code of each sample 
and location is written on the bottom horizontal axis of the chart in Figure 4 so it can 
be traced easily in the sampling location map.
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The overlay geological map and sampling location in Figure 5 were the basis of 
the permeability interpretation and geological scoring.

Fig. 4. Actual infiltration rates in research area

Fig. 5. Geological map of research area modified from geological map of Balikpapan City
Source: [25]
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In this study, Equation (5) was used to determine that the geologic score (Gs) 
was the sum of the lithologic score (ls) and geologic structure (gs) score:

= +Gs ls gs 	 (5)

For instance, Location B2 was located in the Balikpapan Formation; based on 
Table 1, this location had an ls of 2. Structurally, the B2 was also located on the 
fault. According to Table 2, gs was 2, therefore Gs was 2 + 2 = 4, meanwhile Gs of 
B3 was 2 + 0 = 2, and so on.

4.2.	 Correlation

Figure 6 visualizes the correlation matrix of the variables. A larger dot indicates 
a more significant correlation between two variables on the horizontal versus verti-
cal axes (both positively and negatively). The value inside the dot is the coefficient of 
correlation between the parameters in the diagonal axis. From such a figure, the co-
efficient of each parameter to the actual soil infiltration can be ordered from the big-
gest to smallest: geology 0.24, sand 0.19, silt –0.1, initial moisture content –0.13, and 
clay –1.022.

Fig. 6. Correlation matrix plot of all variables  
that shows coefficient correlation of each variable to other variables

The three variables of sand, silt, and clay had greater exclusive correlations be-
cause they were the percentages of the soil grain size and the results of the sieve and 
hydrometer tests. The total sand, silt, and clay percentage in each sample was 100% 
(as required for the USDA soil-classification system). Moreover, the geologic score 
was strongly correlated with the actual infiltration rate (0.24). Only the sand and ge-
ologic score variables were positively correlated with the actual infiltration rate as in-
dependent variables, whereas the others (soil moisture, silt, and clay) were negatively 
correlated. This was a logical phenomenon in which increasing geologic coverage and 
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sand availability contributed to increased interconnected porosity as the channels 
for the infiltration of water deepened into the soil and underlying strata. Moreover, 
more silt and clay reduced the intergrain connected porosity [1]. Soil moisture also 
contributed negatively to the actual infiltration rate, as water was converted to soil 
moisture in the early stage of the actual infiltration; when the soil became saturated, 
infiltration became slower, more constant, or more stagnant. Generally, the correla-
tions among the soil moisture content and the sand, silt, clay, and geologic data and 
the actual infiltration rate had no linear pattern (as shown in Figure 4).

In this study, the multivariate linear regression (MLR) method was tried, but 
the results were not really linearly correlated between the actual infiltration as the 
dependent variable and the soil moisture, sand, silt, clay, and geology as the inde-
pendent variables. Such an  MLR with the function formula code of in  R (formu-
la = actual_inf. ~ soil_moist. + sand + silt + clay + geology, data = training_set) had 
a coefficient of determination  (R2) of prediction versus actual of  0.1577; thus, the 
MLR model was not suitable for the complex correlations of soil moisture, soil tex-
ture, and geology as dependent variables versus actual infiltration as the indepen-
dent variable. Therefore, this research proposed the use of the ANN model to solve 
these problems.

4.3.	 ANN’s Model of Actual Infiltration Rate of Soil
The simulation of the ANN model involved 40 rows of infiltration data, starting 

with training the two ANN formula functions. The first model function was repre-
sented by formula code in R (actual_inf. ~ soil_moist. + sand + silt + clay + geology). 
To determine the geologic roles of the infiltration of the model, the first result was 
compared to the results of the second model function (actual_inf. ~ soil_moist. + 
sand + silt + clay). The hidden layers were activated using the logistic function (sig-
moid), and the output layer was the identity function for the regression problems 
or the softmax function. To reach the minimum error in the training processes, 
the threshold was set to 0.001. To obtain the optimum ANN model for determin-
ing the  actual soil-infiltration rate for each function, nine trial-and-error simula-
tions were conducted using different hidden-layer-setting scenarios, starting with 4 
and 2 nodes and going up to 12 and 2 nodes in the hidden layer. During the training 
and simulation processes, the errors, steps, MAE, RMSE, and MSE of each model 
were recorded (these are shown in Tables 3 and 4, and Figure 7). Based on the se-
ries of recorded values of MAE, RMSE, and MSE (Fig. 7), the optimum ANN model 
for the actual soil-infiltration rate could be determined. The optimum first model 
was the one with nine nodes and two nodes in the hidden layer [c(9,2)], as it had 
the highest levels of MAE, RMSE, and MSE. The training and testing results of the 
model with the hidden layer setting that used fewer nodes or more than c(9,2) nodes 
showed that the  MAE, RMSE, and MSE  levels increased slightly. The optimum 
ANN model architecture consisted of an input layer interlinked to the hidden layer 
of c(9,2) that was further interlinked with the output layer (as illustrated in Figure 8).
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Table 3. Values of MAE, RMSE, MSE, Error, and Steps for each ANN model  
with geologic parameters

Error Parameter
Hidden Layer

c(4,2) c(5,2) c(6,2) c(7,2) c(8,2) c(9,2) c(10,2) c(11,2) c(12,2)

MAE 1.0448 0.9244 0.6834 0.6382 0.7047 0.4512 0.5314 0.7832 0.6819

RMSE 2.2994 1.8952 1.6490 1.5130 1.8955 1.1051 1.2377 1.8926 1.6870

MSE 5.2873 3.5920 2.7191 2.2891 3.5930 1.2213 1.5318 3.5819 2.8460

Error 0.0075 0.0261 0.0023 0.0006 0.0007 0.0065 0.0027 0.0005 0.0003

Steps 9,958 1,645 1,873 2,711 7,067 6,870 1,603 2,328 13,649

Table 4. Values of MAE, RMSE, Error, and Steps for each ANN model  
for which geology is excluded

Error Parameter
Hidden Layer

c(4,2) c(5,2) c(6,2) c(7,2) c(8,2) c(9,2) c(10,2) c(11,2) c(12,2)

MAE 1.1849 0.9244 0.7144 0.5929 0.7675 0.4740 0.6159 0.6820 0.5689

RMSE 3.0334 2.2098 1.5642 1.4989 1.6365 1.3467 1.5383 1.6969 1.2681

MSE 9.2015 4.8834 2.4467 2.2468 2.6782 1.8136 2.3664 2.8794 1.6082

Error 0.0093 0.0070 0.0071 0.0012 0.0061 0.0010 0.0116 0.0033 0.0022

Steps 21,281 10,293 3,503 7,222 3,418 10,032 3,103 2,373 3,669
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Fig. 8. Optimum ANN infiltration configuration models:  
a) with 9 and 2 nodes of hidden soil textures and geology as inputs;  
b) with 9 and 2 nodes of hidden layer geologic parameters excluded

a)

b)
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In the second experiment, the geologic inputs were excluded, and the opti-
mum model was coincidentally found in a configuration with a hidden layer setting 
of c(9,2); this had fewer nodes than the other configurations but resulted in high-
er MAE, RMSE, and MSE levels. The second optimum ANN model without geologic 
input results is listed in Table 4 and depicted in Figure 7. In this figure, the overlay 
of the line charts for the model metrics of both the first and second optimum models 
illustrates a comparison of their results.

4.4.	 Model Accuracy and Precision

The first optimum ANN model for the actual soil infiltration (using the geo-
logical parameters as input) was achieved with a hidden layer functional argument 
of c(9,2), resulting in an error of 0.0065 and a total of 6870 steps; its configuration is 
illustrated in Figure 8a. Moreover, the second optimum model without the geolog-
ical parameters was reached when the hidden layer was set to c(9,2) with an error 
of 0.0010 and 10,032 steps; its ANN model configuration is illustrated in Figure 8b.

In addition to relying on the MAE, RMSE, and MSE levels of the optimum mod-
el, a scatter plot of the actual infiltration rate versus the prediction value of the in-
filtration rate was used to further assess the accuracy and precision of the optimum 
model in this research (as presented in Figure 9).

Fig. 9. Scatter plot with fitting lines of actual infiltration rate  
versus result of prediction of optimum ANN model:  

a) with geologic parameter; b) without geologic parameter

a)	 b)

To visualize the fit between the prediction of the actual of the infiltration rate, 
the blue diagonal line represents the fitting line of the actual and prediction data, 
while the green line represents the line where the error was borderline more than 0.5; 
this could also help to judge the model’s precision. The dots represent the actual and 
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predicted actual infiltration rates; a dot that is closer to the blue line indicates its 
higher accuracy. In the model with the geologic parameters, there are more red dots 
that are closer to the fitting line than in the second scatter plot (which is the predic-
tion result of the optimum model without the geologic parameters).

5.	 Discussion

Based on the results of both the sieve and hydrometer tests on the soil samples 
(and the USDA soil classification system), the research area was dominated by rel-
atively clean sand, which consisted of 49% sand and 24% loamy sand; the remain-
ing 27% consisted of sandy clay loam, clay loam, and sandy clay (which is a mixture 
of clay, silt, and sand – as illustrated in Figure 2). These soil classes reflected the 
availability of connected intergrain pore spaces, as more than 73% of the soil tended 
to permeate and had greater infiltration rates. The remaining areas were imperme-
able and had lower infiltration rates [24].

To determine the role of geologic activity in actual soil infiltration, geological 
attribute scoring can be applied in geological hazard mapping [35]. The geological 
scoring was conducted to turn the descriptive and qualitative data into quantitative 
data based on Tables 1 and 2. Moreover, the geological expertise domain could be bi-
ased; however, the objectivity of the geological score was generally confirmed with 
a correlation plot, a logical explanation, and an analysis of the correlations among 
all of the variables. The geologic score focuses on the additional interconnected pore 
space, whether provided by the soil’s lithological texture or geological structures; 
this increases the actual soil infiltration. The correlation matrix plot in Figure 6 shows 
a positive correlation between the geologic score and the actual soil-infiltration rate; 
its correlation coefficient was 0.24 out of 1, which demonstrated that the geological 
parameter played a significant role as compared to the others.

For instance, the soil moisture negatively correlated with the actual infiltration 
rate. This correlation could be further explained by how the infiltration of water 
filled the soil’s porosity and increased the amount of soil pore water or moisture. 
The higher soil moisture decreased the infiltration rate [36]. This phenomenon was 
proven by the negative correlation between the soil moisture and the actual infil-
tration rate in the correlation plot in Figure 6; its correlation coefficient was –0.13 
out of –1. The percentage of sand in the soil positively correlates with the actual 
soil infiltration rate because increased sand intergrain porosity allows water to flow 
through the intergrain spaces in relatively clean sand; higher sand content results 
in greater interconnected porosity, and the correlation coefficient, as shown in Fig-
ure 6, is 0.19. Moreover, silt and clay contents negatively correlate with the actual 
infiltration rate. The correlation coefficients are –0.1 and –0.22, respectively.

The correlation plot played an imperative role in determining the actual soil in-
filtration and the quantitative geological parameters, so these parameters needed to 
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be included as inputs in the development of an ANN model of the actual infiltration. 
The model development involved the initial soil moisture, soil texture, and geologic 
parameters as inputs and the actual soil infiltration rate as the output; despite the 
ANN  model, the weights of the geological parameters could not be determined. 
However, the results of the optimum ANN model prediction with 9 and 2 hidden 
nodes [c(9,2)] yielded accurate prediction results, as was proven by the MAE levels 
of 0.4512 and 1.1051 and MSE levels of 1.2213 (listed in Table 3 and depicted in the 
overlay line chart of the model metrics in Figure 7). The accuracy of the first opti-
mum prediction was also confirmed visually by the scatterplot in Figure 9a; this 
showed that the model accuracy was higher than that of the second optimum model, 
as indicated by intersection of dots and fitting line. The strengths of the first opti-
mum model were that it was more accurate and has fewer errors, and its weakness 
was that it had less precision.

The analysis was also conducted by comparing the metrics of the first optimum 
model (which are listed in Table 3) and the second optimum model (which are listed 
in Table 4 and depicted in Figure 7). Table 4 shows the results of the series model 
without the geologic parameters. The optimum ANN model was reached with two 
hidden layers and 8 and 2 nodes. The second model-prediction result reached an 
optimum  MAE of  0.5268, an  RMSE of  1.3609, and an  MSE of  1.8520; these were 
higher than those of the first optimum model. This meant that the second optimum 
model was less accurate than the first. According to Figure 9b, however, the second 
optimum ANN model c(9,2) was more precise than the first optimum ANN mod-
el c(9,1); in Figure 9b, more dots are closer to the fitting line and within the two green 
lines (although the fitting lines intersect fewer dots). Therefore, the strength of the 
second optimum model was more precise, and its weaknesses were less accurate 
and resulted in greater errors during the training (as shown in Figure 8b).

Further evaluation and assessment of the developed model were conducted 
using the Taylor diagram (which was generated via the open-air package in R Stu-
dio) [37]. All of the models in the first experiment were plotted in the Taylor diagram 
in Figure 10a, wherein the Taylor diagram model c(9,2) had the best performance 
because it had the most significant correlation coefficient and the smallest RMSE. 
However, it had a mediocre standard deviation, and the gray cross symbol repre-
sented the model. Moreover, the second experiment (Fig. 10b) showed that, while 
Model  c(9,2) had the highest petite  MAE, Model  c(12,2) demonstrated the best 
performance in terms of the coefficient correlation, RMSE, and standard devia-
tion (as indicated by the green dots). The overall model that was developed in the 
first experiment exhibited less variation in the results when compared to the sec-
ond experiment.

With the use of the data on soil moisture, soil texture, and USDA soil class as well 
as a geologic map of the research area, the actual soil-infiltration rate at any point in 
the research area could be accurately predicted via the first optimum ANN model. 
The simulation could also be performed using the developed model. An accurate 
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model will reduce the time and costs of projects that measure field infiltration. This 
approach will benefit mitigation planning in hydrometeorological disasters such as 
floods and landslides. It will also be advantageous in other planning areas, such 
as drainage, agriculture, and groundwater management.

Fig. 10. Taylor diagrams:  
a) models with geologic parameters; b) models without geologic parameters

a)

b)
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The MAE, RMSE, and MSE levels of the first optimum model proved that the 
model was relatively accurate and that the geologic parameters played an essential 
role in determining the actual infiltration rate; this mainly controlled the contin-
ual movement of infiltration water under the soil layer. The weakness of this re-
search was the lack of subsurface data, such as geophysical data, the RQD of the 
cored samples, and the coefficient of the permeability (k) of the jointed geologic stra-
ta [38, 39]; however, the subsurface data could be obtained by using the available 
geological map. Undeniably, the qualitative geology could be better quantified and 
scored when supported by subsurface data. In addition to the aim of this research, 
the mechanism through which the water infiltrated the geologic strata and moved 
continually should be further studied in future research.

The strength of the model is providing geological parameters, not merely soil 
parameters; in most places, these are not thicker than the underlying geologic strata. 
The weaknesses of this model are the 40 data points of soil infiltration, soil moisture, 
percentage of sand, percentage of silt, and percentage of clay. It also lacks subsur-
face geological data such as drilling, seismic data, and geoelectric data. The geology 
is merely based on the interpretation of the lithological and geological structure of 
a geological map; by providing more such geophysical data, it will provide quanti-
tative and exact data as a parameter in the ANN model.

6.	 Conclusion

The soil texture showed a negative correlation with the actual infiltration rate 
(except for the percentage of sand). The geologic score, which reflected the litholo-
gy and geological structure, was positively correlated with the actual infiltration rate 
and played a more significant role than the other parameters (as indicated by its cor-
relation coefficient of 0.24). The initial water content was also negatively correlated 
with the actual infiltration rate. The ANN infiltration model was developed with soil 
moisture, sand, silt, clay, and geology as inputs. The hidden layer consisted of two 
columns, which were determined through a series of trial-and-error tests; the node 
counts ranged from 4 to 12, while the second column contained two nodes. The out-
put layer represented the actual infiltration rate. After the training, the first optimal 
model was achieved with nine and two nodes, yielding an error of 0.0065 and requir-
ing 6870 steps during the training. This model attained an MAE of 0.4512, an RMSE 
of  1.1051, and an  MSE of  1.2213. In contrast, the optimum second ANN  model 
(where the geologic parameters were excluded) was reached with nine nodes and 
two nodes in the hidden layers, with 0.0010 errors and 4915 steps; additionally, the 
model had an MAE of 0.5268, an RMSE of 1.3609, and an MSE of 1.8520. The model 
proved that geology played a vital role in controlling the actual soil-infiltration rate 
at each sampling location. The implication of this research will open new research 
venues for other quantitative geologic parameters in infiltration and the water cycle.
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