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Abstract:	 Population expansion and climate change have significantly affected the coastal 
environment in Lampung, Indonesia, mainly through the conversion of man-
groves into shrimp-farming ponds. This transformation requires effective mon-
itoring to evaluate its impacts on coastal ecosystems and local livelihoods, as 
shrimp farming is a major income source in East Lampung. This research im-
proves aquaculture detection and monitoring along the eastern coast of Lam-
pung by integrating several water indices such as the normalized difference 
water index (NDWI), modified NDWI (MNDWI), water ratio index (WRI), and 
a newly developed water index (WI), within the cloud-based Google Earth En-
gine (GEE) platform to capture spatial and temporal variations. Reference data 
were derived from the 2019 Regional Medium-Term Development Planning Doc-
ument (RPJMD) and high-resolution Google Earth imagery for accuracy assess-
ment. Results showed that WRI combined with the Otsu’s thresholding method 
achieved the highest performance, with an overall accuracy (OA) of 93.3% and 
a kappa coefficient (κ) of 86.7%. Analysis from 2018 to 2022 showed a decline in 
aquaculture area from 8,407.35 ha to 3,415.50 ha, aligned with statistical data 
on shrimp production, which decreased from 24,202 t to 8,041 t. These results 
indicate that the method provides a rapid and effective tool for detecting aqua-
culture changes, enabling local authorities to strengthen coastal management 
for sustainable development, ecosystem protection, and livelihood  support.
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1.	 Introduction

Rapid population growth and global climate change have significantly influenced 
coastal dynamics – particularly in Lampung, Indonesia [1]. Lampung serves as a crucial 
linkage between the islands of Sumatra and Java and has exhibited notable changes 
in land-use patterns – especially marked by the increasing conversion of mangrove-
covered areas into shrimp-farming or aquaculture ponds [2]. Notably, Lampung is Indo-
nesia’s second-largest shrimp producer; however, these land conversions pose serious 
threats to the coastal ecosystems that sustain local communities and livelihoods [3]. This 
underscores the urgent need for the precise and efficient monitoring of shrimp-farming 
practices to better understand and manage coastal changes – particularly in the eastern 
region of Lampung. Conventional monitoring techniques for coastal environments 
(which typically depend on manual data collection) are frequently time-consuming 
and require a lot of effort [4]. This inefficiency underscores the necessity for innovative 
solutions for accurately assessing and managing coastal resources. Therefore, remote-
sensing technology has emerged as a promising alternative, providing multi-temporal 
and multi-spectral resolutions that significantly enhance the ability to track changes 
over time [5]. The multi-temporal advantage of repetitively capturing images over the 
same area facilitates the observation of dynamic in-land use, while the multi-spectral 
capacity ensures heightened sensitivity to various wavelengths, allowing for a detailed 
analysis of land cover and changes. Water bodies are an entity in the land-use or land-
cover concept, so they can be effectively detected using multi-spectral imagery.

Water indices are widely used for detecting water bodies – one of which is the 
normalized difference water index (NDWI). Previous studies have employed NDWI 
to assess various water features such as rivers, lakes, reservoirs, and ponds  [6]. 
Alongside the advancements in methodologies, NDWI was modified to create the 
modified normalized difference water index (MNDWI), which possesses enhanced 
capabilities for distinguishing water bodies in built-up areas [7]. Along with techno-
logical advancements, the detection of water bodies has improved through the devel-
opment of various indices – including the water ratio index (WRI) and the recently 
introduced water index (WI) [8]. Previous research in the detection of water bodies 
has predominantly relied on traditional methods that have utilized remote-sensing 
imagery, including Landsat imagery that can be downloaded from the US Geolog-
ical Survey  (USGS) or Sentinel imagery that is provided by the European Space 
Agency (ESA) [9, 10]. However, cloud-based engines (particularly, Google Earth En-
gine [GEE]), have recently made these data sets available for direct analysis within 
an integrated online environment  [11]. Compared to conventional desktop-based 
remote-sensing analysis, GEE offers significant advantages for developing countries, 
including free access to massive satellite archives, high computational efficiency, and 
the elimination of hardware and software limitations [11, 12]. These features make 
GEE particularly suited for countries like Indonesia, where limited infrastructures 
can hinder consistent environmental monitoring and data analysis. Recent studies 
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have demonstrated the effectiveness of  GEE in monitoring  aquaculture in South-
east Asia. For instance, [13] successfully mapped land-based aquaculture from 1990 
through  2020 used edge-detection methods with high accuracy, while  [14] em-
ployed GEE and backscatter data from Sentinel-1 to map coastal aquaculture ponds in 
Vietnam (achieving an above 90% accuracy level). These studies highlight GEE’s po-
tential to not only to enhance efficiency but also facilitate the rapid detection of water 
bodies, thereby enabling more-timely and precise monitoring. Building upon these 
foundational studies, this research aims to evaluate and monitor aquaculture farms in 
the Lampung area through the utilization of a cloud-based engine – particularly the 
integration of water indices and the free available data sets that are provided by GEE.

2.	 Study Area
The study area was situated along the coastal regions of East Lampung within 

the coordinates of 105°45′00′′S–105°50′00’’S and 5°22′00′′E–5°43′00′′E (Fig. 1).

Fig. 1. Map of study area
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The terrain was largely flat, with land use primarily consisting of agricultural 
fields, residential zones, and aquaculture sites. In East Lampung, aquaculture prac-
tices typically range from semi-intensive to intensive systems. The industry mainly 
focuses on shrimp farming, with numerous ponds that have been specifically de-
signed for this purpose playing a significant role in the local economy. In the East 
Coast villages, shrimp aquaculture is a vital livelihood; it is not only limited to back-
yard hatchery businesses, but it also includes activities such as motorcycle rentals 
for transporting shrimp inputs to ponds, daily labor for pond preparation between 
culture cycles, ice production/sales, and shrimp collection [3].

3.	 Data and Method
3.1.	 Data

The imagery data that was used in this study was collected from Landsat-8 with the 
Onboard Operational Land Imager (OLI) sensor and the Thermal Infrared Sensor (TIRS) 
that was provided by the GEE data sets. Landsat-8 is an Earth observation satellite that 
provides publicly accessible imagery data that can be used for a variety of research 
applications [4].

Table 1. Landsat-8 imagery specification

Sensor Landsat-8 OLI/TIRS

Bands

Band 1 (0.435–0.451 μm) 30 m – coastal aerosol
Band 2 (0.452–0.512 μm) 30 m – blue
Band 3 (0.533–0.590 μm) 30 m – green
Band 4 (0.636–0.673 μm) 30 m – red
Band 5 (0.851–0.879 μm) 30 m – near infrared
Band 6 (1.566–1.651 μm) 30 m – shortwave infrared 1
Band 7 (2.107–2.294 μm) 30 m – shortwave infrared 2
Band 8 (0.503–0.676 μm) 15 m – panchromatic
Band 9 (1.363–1.384 μm) 30 m – cirrus
Band 10 (10.60–11.19 μm) 100 m – thermal infrared 1
Band 11 (11.50–12.51 μm) 100 m – thermal infrared 2

Spatial resolution 15, 30, 100 m

Temporal resolution 16 days

Data used in this study

2018 (2018-01-01 through 2018-12-31)
2019 (2019-01-01 through 2019-12-31)
2020 (2020-01-01 through 2020-12-31)
2021 (2021-01-01 through 2021-12-31)
2022 (2022-01-01 through 2022-12-31)

The advantages of Landsat-8 imagery lie in its radiometric, temporal, and spa-
tial resolutions. Landsat-8 imagery has bands in the visible wavelength range that 
can be utilized for detecting water bodies. Landsat-8 imagery has a spatial resolu-
tion of 15 m for the panchromatic band, 30 m for the visible bands, and 100 m for 



Integrating Water Indices and Cloud-Based Engine for Change Detection...	 53

the thermal bands; it also has a temporal resolution of 16 days. Another advantage 
is that Landsat-8 imagery products are accessible for free through the United States 
Geological Survey (USGS) or the cloud platform that is provided by Google. More-
over, the data set from GEE has the advantage of being able to be temporally mosa-
icked, thereby minimizing cloud cover [15].

In this study, the Landsat-8 imagery that was used was not a single image from 
a single acquisition; rather, the mosaic data by GEE was compiled for an entire year 
of acquisition, utilizing the visible and infrared bands at a spatial resolution of 30 m. 
Detailed information regarding Landsat-8 imagery is presented in Table 1.

The reference data for this study was based on the Regional Medium-term De-
velopment Planning Document  (RPJMD) of Lampung Province for the year 2019, 
which was provided by the National Geospatial Information Agency (BIG). Addi-
tionally, data was obtained from the Central Statistics Agency (BPS) for 2018, 2019, 
2020, 2021, and 2022 in order to facilitate a comparison with the total aquaculture 
production.

3.2.	 Water Indices

To identify and detect water bodies, this study used four water indices; namely, 
NDWI, MNDWI, WRI, and WI [5, 16]. Proposed by McFeeters [17], NDWI serves 
as an index for extracting water bodies by integrating the spectral reflectance from 
the green  (ρG) and near-infrared (ρNIR) bands. The resulting values range from  –1 
to 1, where positive values indicate the presence of water bodies. The calculation 
of NDWI can be observed in Equation (1):

	 G NIR

G NIR

NDWI ρ −ρ
=
ρ +ρ

	 (1)

As for its development, NDWI was modified by Xu [18]; this resulted in and 
index called MNDWI. MNDWI employs the spectral reflectance of the green  (ρG) 
and short-wave infrared  (ρSWIR) bands for water-body extraction and had a range 
from –1 to 1, where values that are greater than 0 signify the presence of water. The 
algorithm for MNDWI can be seen in Equation (2):

	 G SWIR

G SWIR

MNDWI ρ −ρ
=
ρ +ρ

	 (2)

WRI represents an advancement in the detection of water bodies by utilizing 
the reflectance from the green (ρG), red (ρR), NIR (ρNIR), and SWIR (ρSWIR) bands; this 
is shown in Equation (3). Water bodies are identified when the WRI value is greater 
than 1 [19]:

	 G R

NIR SWIR

WRI ρ +ρ
=
ρ +ρ

	 (3)
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Moreover, WI  is an improved version of the water body index; it utilizes re-
flectance that is derived from the green (ρG), red (ρR), near-infrared (ρNIR), shortwave 
infrared  (ρSWIR1), and middle infrared (ρSWIR2) bands from Landsat  TM  [20]. Since 
the imagery that was employed in this study was from Landsat-8 OLI; however, the 
middle infrared band  (2.08–2.35  μm) was substituted with Shortwave Infrared 
Band 2 (2.107–2.294 μm) due to their nearly identical wavelengths. Equation (4) il-
lustrates the calculation of  WI, where values that are greater than  0 indicate the 
presence of water bodies:

	 G R NIR SWIR1 SWIR2WI 1.7204 171 3 70 45 71= + ρ + ρ − ρ − ρ − ρ 	 (4)

In this study, the thresholds that were used were the default thresholds that 
were determined by each water index for extracting water bodies. In the majority of 
the water indices, the established threshold was 0; however, there were some thresh-
olds that also applied a value of 1 as the boundary for identifying water bodies [16]. 
Additionally, this research applied Otsu’s threshold as a comparison to the default 
threshold, which is well-known for its effectiveness in establishing boundaries for 
identifying water bodies [22]. Otsu’s threshold utilizes the maximum between-class 
variance criterion to determine the optimal threshold t* for NDWI-image segmenta-
tion; its calculations are detailed in Equations (5), (6), and (7):

	 2 2 2( ) ( )nw nw w wP M M P M Mσ = ⋅ − + ⋅ − 	 (5)

	  nw nw w wM P M P M= ⋅ + ⋅ 	 (6)

	 { }2 2* Arg max ( ) ( )nw nw w wa t b
t P M M P M M

≤ ≤
= ⋅ − + ⋅ − 	 (7)

To reduce the bias in detecting farms, other bodies of water such as rivers and 
seas were excluded by using a masking method. This allowed for a more focused 
analysis of those areas that were specifically used for farms, thereby enhancing the 
accuracy of the detection algorithms.

3.3.	 Validation

The validation was carried by the confusion matrix method; this approach is 
a widely recognized technique for validating data for extracting water bodies [21]. 
The reference data was obtained from BIG, with random sampling conducted at var-
ious shrimp farm locations to serve as validation samples. A total of 300 sampling 
points were collected, encompassing both farm and non-farm sample points.

In the confusion matrix, the overall accuracy (OA) value was computed as the 
percentage of the correctness of the tested water indices [21]. Concurrently, the cal-
culation of the kappa index (κ) was performed to assess the degree of the reliability 
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of the classifications [5]. The calculations for OA and κ can be observed in the Equa-
tion (8) and (9):

	 TP TNOA
T
+

= 	 (8)

	
( )2 TP TN FN FP

 
(TP FP) (FP TN) (TP FN) (FN TN)

⋅ ⋅ − ⋅
κ =

+ ⋅ + + + ⋅ +
	 (9)

where T represents the total number of pixels in an image, TP  (true positive) re-
fers to the count of the water pixels that were accurately classified, TN (true nega-
tive) denotes the count of the non-water pixels that were accurately misclassified, 
FP (false positive) is the count of the pixels that were incorrectly identified as water, 
and FN (false negative) is the count of the water pixels that were missed [21].

The data processing was conducted through a cloud-based computational 
framework that leveraged GEE technology. The research workflow can be observed 
in the illustration that is presented in Figure 2.

Fig. 2. Research flows

4.	 Results and Discussion

4.1.	 Water-Body Extraction

Thresholds served as delimiters between water objects and other features in the 
water-body extraction. This study utilized two threshold types: a default threshold, 
and the Otsu’s threshold. The default threshold for  NDWI, MDWI, and  WI each 
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separated water bodies from other objects at a threshold of 0, with water bodies be-
ing detected at values above 0. In contrast, WRI defined water bodies as those with 
values above 1. Unlike the Otsu’s threshold, which determines the threshold based 
on the values of each analyzed image, the Otsu’s method computes the threshold 
by partitioning image pixels into foreground and background pixels in such a way 
that minimizes intra-class variance (or maximizes inter-class variance), resulting in 
indices that may vary across different images and indices [31].

Figure 3 illustrates a visual representation of the differences between using a de-
fault threshold and Otsu’s threshold in detecting aquaculture through water indices. 
Almost all of the results from the extraction of water indices using Landsat-8 imag-
ery from 2019 with Otsu’s threshold produced representations that closely aligned 
with the existing conditions of the ponds in 2019. Nonetheless, some water indices 
captured other objects and misinterpreted them as water bodies (as demonstrated in 
Figure 3g); this illustrated the extraction results from MNDWI using Otsu’s thresh-
old. Furthermore, a comparison of the estimated farm areas with water indices and 
the area of aquaculture areas that was obtained from RPJMD 2019 can be observed 
in Table 2.

Fig. 3. Comparison of existing farms and water-body extraction based on water indices  
from Landsat-8 imagery in 2019

a)	 b)	 c)	 d)	 e)	 f)	 g)	 h)	 i)

With both the visual representations and the calculation data, the deployment of 
Otsu’s threshold yielded values that were closer to the reference data from RPJMD. 
Using the Otsu’s threshold method, MNDWI and WRI produced area estimates that 
aligned closely with the RPJMD data and were linear with the visual representa-
tions. In contrast, NDWI with the default threshold resulted in a substantially un-
derestimated area when compared with the RPJMD data.
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Table 2. Comparison of farm-area estimates with water indices [ha] for 2019  
and RPJMD data water indices from 2019

Water Indices

Area in 2019 

area estimation  
using default threshold

area estimation  
using Otsu’s threshold RPJMD 2019

NDWI 605.07 5,385.96

8,662.48
MNDWI 3,372.66 8,077.95

WRI 1,402.65 7,530.12

WI 3,901.14 4,058.19

4.2.	 Overall Accuracy and Kappa Coefficient

The reference data that was used was land-use data that was published by BIG 
with metadata from 2019 for the purposes of the RPJMD of Lampung Province. A to-
tal of 150 sampling sites for farms were randomly selected. To reduce the bias, an 
equivalent number of non-farm sampling points were also created [5], resulting in 
a total of 300 sampling points that included both farm and non-farm sites. Validation 
was performed using the confusion matrix, resulting in values for overall accura-
cy (OA) and kappa index (κ). A comparison of OA and κ among NDWI, MNDWI, 
WRI, and WI using the standard threshold and Otsu’s threshold is shown in Figure 4 
and Table 3.
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Fig. 4. Overall accuracies and kappa coefficients of NDWI, MNDWI, WRI, and WI  
based on reference data that was obtained from RPJMD 2019
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Table 3. Validation test results for water indices from 2019  
using reference data from the RPJMD 2019

Validation NDWI MNDWI WRI WI

κ ‘Otsu’ 0.672 0.827 0.867 0.547

OA ‘Otsu’ 0.838 0.913 0.933 0.773

κ ‘Default’ 0.053 0.500 0.180 0.527

OA ‘Default’ 0.527 0.750 0.590 0.763

The validation results indicated that the OA and κ values with Otsu’s threshold 
exhibited a higher tendency compared to those that were obtained with the default 
threshold. This was consistent with the representation of the water indices that used 
Otsu’s threshold, which aligned more closely with the visualization of the exist-
ing ponds in Lampung. MNDWI yielded an OA level of 0.913 and a κ coefficient 
of 0.827. As an enhanced methodological approach, MNDWI offered superior detail 
relative NDWI [23]. This increased level of detail suggests that MNDWI effective-
ly eliminated features that could have obstructed the identifications of water bod-
ies, including vegetation, soil, and urban development  [18]. This finding aligned 
with previous research, which demonstrated that MNDWI achieved accuracy 
rates that exceeded 90% in detecting aquaculture ponds in India [23]. Additionally, 
MNDWI  was identified as the sole index that was capable of enhancing the vis-
ibility of water surfaces and proved to be the most effective in delineating water 
bodies within floodplains in Hungary  [24]. In the Loess Plateau region of China, 
MNDWI  similarly delineated the boundaries of both small and large ponds  [25]. 
However, it is important to consider the noise that may have been encountered in 
each study area when using MNDWI. In this study, MNDWI produced an overesti-
mation because it detected clouds and marshes that were not part of the pond areas.

Meanwhile, WRI produced slightly higher validation values when compared 
to MNDWI, with OA and κ coefficient levels of 0.933 and 0.867, respectively. WRI is 
an index that integrates multiple spectral bands, including green, red, near infrared, 
and shortwave infrared [19]. Compared to MNDWI, WRI showed marginally higher 
accuracy based on both the OA and κ coefficient values. This finding aligned with 
the research of [26], which indicated that WRI effectively mapped the boundaries of 
aquaculture sites, mirroring ground-truth results in Uttarakhand, India. Conversely, 
MNDWI is recommended as the index that is suitable for enhancing urban spatial 
planning and managing flood-disaster control by urban planners for those areas that 
are subject to flooding within metropolitan zones [27]. In this study, WRI produced 
clearer delineations of water bodies compared to the results from MNDWI; this im-
proved delineation coincided with the reductions in cloud and shadow noise when 
using WRI. This reduction in noise was not limited to water bodies but was also 
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observed across other land-use types, thus suggesting that clouds could be consis-
tently mitigated by adopting WRI across different contexts [8]. Although WRI yield-
ed the highest OA and κ levels in this study, its applicability to other coastal areas 
remains conditional; this is because environmental conditions and sample selection 
influence its validation outcomes  [31]. The noise that is generated by clouds and 
their shadows is minimized in WRI. Furthermore, this observation is consistent with 
other land-use types, thus indicating that the presence of clouds can be effectively 
mitigated using this index [8].

To assess the performance of the individual indices in the subsequent years, 
the accuracy tests were interpreted visually using high-resolution Google Earth im-
agery. Sampling was performed through visual interpretation by year, with a total 
of 300 points; these were evenly divided into 150 points for farms and 150 points 
for non-farms. Google Earth provides multitemporal information with high reso-
lution, albeit with limitations in its multispectral capabilities [32]. The comparison 
between using the reference data from Google Earth and RPJMD in 2019 revealed 
notable divergences in the OA and κ values (as shown in Table 4). For 2019, employ-
ing RPJMD data yielded the highest OA level (exceeding 0.9), as was indicated in 
the MNDWI and WRI analyses with the Otsu’s threshold. In addition to achieving 
a high OA level, the use of the RPJMD reference data provided a level of confidence 
that was nearly perfect (as was indicated by a κ value that exceeded 0.81) [34]. By 
contrast, the calculations based on the Google Earth reference data produced a max-
imum OA level of 0.81 and a maximum κ level of 0.62 (as shown in the NDWI anal-
ysis with the default threshold). Therefore, the RPJMD reference data provided ro-
bust validation that maximized the OA and κ values in this study (greater than 0.90 
and 0.81, respectively).

Table 4. Comparison of validation using reference data  
from RPJMD and Google Earth for 2019

RPJMD 2019 Default 
threshold

Otsu’s 
threshold Google Earth 2019 Default 

threshold
Otsu’s 

threshold

NDWI
OA 0.527 0.838

NDWI
OA 0.593 0.810

κ 0.053 0.672 κ 0.187 0.620

MNDWI
OA 0.750 0.913

MNDWI
OA 0.760 0.747

κ 0.500 0.827 κ 0.520 0.493

WRI
OA 0.590 0.933

WRI
OA 0.667 0.777

κ 0.180 0.867 κ 0.333 0.553

WI
OA 0.763 0.773

WI
OA 0.780 0.793

κ 0.527 0.547 κ 0.560 0.587



60	 M.Y. Iswari, I.H. Supriyadi, D. Nurdiansah, K. Anggraini, N. Rahili, Suyarso

A comparison of the OA and κ levels across all of the indices and years is shown 
in Table 5. The validation that used reference data from Google Earth indicated 
a tendency for those analyses that employed the Otsu’s threshold to yield higher 
OA levels when compared with the analyses that used the default threshold. For 
example, the OA level of NDWI was 0.56 with the default threshold for 2021, while 
the OA level with the Otsu’s threshold analysis hovered at around 0.767. Differences 
could also be observed in the value of κ, which tended to be below 0.8; this indicat-
ed a lower confidence level in the analysis [34]. In some calculations, however, the 
Google Earth reference data could produce OA levels of up to 0.910 with κ  levels 
reaching 0.820 for WRI 2018 with the Otsu’s threshold. The NDWI, MNDWI, and 
WI indices for that year also yielded OA levels above 0.80, thus suggesting that us-
ing Google Earth could be a viable option when ground-truth reference data such 
as RPJMD is unavailable.

Table 5. Comparison of OA and κ levels with sampling from Google Earth

Water 
Index

2018 2019 2020 2021 2022

OA κ OA κ OA κ OA κ OA κ

Default

NDWI 0.577 0.153 0.593 0.187 0.630 0.260 0.560 0.120 0.573 0.147

MNDWI 0.820 0.640 0.760 0.520 0.710 0.420 0.787 0.573 0.743 0.487

WRI 0.637 0.273 0.667 0.333 0.710 0.420 0.623 0.247 0.627 0.253

WI 0.847 0.693 0.780 0.560 0.723 0.447 0.767 0.533 0.75 0.500

Otsu

NDWI 0.837 0.673 0.810 0.620 0.727 0.453 0.767 0.533 0.710 0.420

MNDWI 0.827 0.653 0.747 0.493 0.633 0.267 0.760 0.520 0.713 0.427

WRI 0.910 0.820 0.777 0.553 0.713 0.427 0.783 0.567 0.640 0.280

WI 0.847 0.693 0.793 0.587 0.737 0.473 0.780 0.560 0.757 0.513

4.3.	 Monitoring Aquaculture and Sustainable Coastal Management  
in Lampung

Annual area estimation calculations are required to monitor changes based on 
the estimates from each index. The area estimates are computed in GEE processing 
using both the default threshold and the Otsu’s threshold for the years 2018, 2019, 
2020, 2021 and 2022 on NDWI, MNDWI, WRI, and WI. Table 6 presents a compari-
son of the area estimates for each index in hectares.
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Table 6. Estimated farm areas using water indices  
for years 2018, 2019, 2020, 2021, and 2022 [ha]

Year

NDWI MNDWI WRI WI

RPJMD
Default 

threshold
Otsu’s 

threshold
Default 

threshold
Otsu’s 

threshold
Default 

threshold
Otsu’s 

threshold
Default 

threshold
Otsu’s 

threshold

2018 742.50 5,509.89 5,102.01 9,655.29 1,842.39 8,407.35 5,323.95 5,483.97

8,662.48

2019 605.07 5,385.96 3,372.66 8,077.95 1,402.65 7,530.12 3,901.14 4,058.19

2020 1,568.90 5,328.45 7,318.08 10,203.66 2,853.90 3,941.01 6,512.40 6,657.66

2021 1,315.20 5,982.39 6,375.24 8,613.45 2,459.07 5,773.05 5,982.39 6,118.74

2022 1,786.40 5,445.90 6,777.99 9,782.91 3,147.12 3,415.50 6,330.42 6,453.81

It was evident that, in all of the years, the area estimates were underestimates 
when using the default threshold. This was particularly notable for the NDWI in-
dex, which yielded estimates that were lower than the overall average when com-
pared with the other indices (with a value of 742.50 ha). By contrast, the data that 
was most reliable for comparison was the 2019 data that referenced RPJMD; here, 
the calculations that used the Otsu’s threshold more closely approximated the ref-
erence area than those that used the default threshold. In several studies on surface 
water monitoring, the Otsu’s threshold produced high accuracy, with overall ac-
curacy (OA) values exceeding 90% [32, 33]. Therefore, the Otsu’s threshold in this 
study aligned with the findings from previous research.

To examine the relationship between the estimated farm area and productiv-
ity, this study utilized productivity data from  BPS. The area estimates that were 
compared were those that were derived from the index analysis with the highest 
validation. Between 2018 and 2022, the data analysis revealed a general decline in 
area of aquaculture; a notable exception was 2021, when an increase could be ob-
served (Fig. 5). Similarly, the data from BPS indicated a downward trend in aqua-
culture productivity (measured in tons) over the same period. This parallel decline 
suggested a consistent trend between the reducing aquaculture area and the overall 
productivity in East Lampung during these years.

Estimation area diagrams that used water indices showed a declining trend 
from 2018 to 2020, with a rise in 2021 and a subsequent decline again in 2022. Mean-
while, the productivity graph showed declines from 2018 through 2021, with a slight 
increase in 2022. From this analysis, a divergent trend occurred in 2021, where the 
estimated area increased while productivity decreased. The decline in productivity 
in 2021 was driven by deteriorating environmental quality that triggered disease 
outbreaks accompanied by environmental degradation due to coastal activity pres-
sure, changes in land use for industry and transportation, and a shift of the cultivat-
ed land from semi-intensive/intensive ponds to traditional ponds [35]. According to 
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archives from the National Agency for Disaster Management (BNPB) and BPS, East 
Lampung additionally experienced four flood events in a year; the highest number 
that was recorded within the 2018–2024 period (with the greatest disaster occurring 
in December 2021)  [36]. This condition may have contributed to the observed in-
crease in the estimated pond area for that year.

Fig. 5. Comparison of aquaculture area estimates from data analysis  
with productivity data from BPS

From the results of this analysis, the use of water indices in this study proved 
to be efficient for examining the spatial dynamics of the area (particularly, shrimp 
farms) over the specific temporal periods. This aligned with the prior studies that re-
ported water indices as being effective for mapping small water bodies (especially in 
tropical regions); however, they were less suitable in snow-covered areas [5, 21, 28]. 
However, the selection of the reference data influenced the validation analysis in 
this study. The reference data that was derived from Google Earth yielded lower val-
idation values for both OA and κ. In contrast, the reference data that was obtained 
from RPJMD (which was official data that was collected from censuses and field sur-
veys) produced higher OA and κ values. Additionally, this method can also enable 
the modeling and prediction of farm areas, which can be correlated with productivi-
ty; therefore, the government should consider adopting this approach as a quick and 
efficient way to manage aquaculture for sustainable coastal development.

Shrimp commodity production in Lampung ranks fifth nationally in Indone-
sia according to the Regional Development Planning Agency of Lampung Province 
(Bappeda Lampung). In line with this, the local government seeks to strengthen the 
economy in the rural and coastal areas that are focused on aquaculture management, 
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marketing, and the supervision of marine and fishery resources (as outlined in the 
RPJMD document) [29]. This research can be adapted to support one of these ini-
tiatives – specifically managing the aquaculture sector. This includes establishing 
a systematic monitoring program that utilizes free cloud-data-set analysis to evalu-
ate and track changes in farm areas over time [5], integrating productivity data to as-
sess the potential output of shrimp farms [30], and encouraging data collection from 
stakeholders and farmers in order to enrich the database with real productivity data 
(thereby improving future assessments). However, policymakers should also devel-
op regulations for land modifications of shrimp ponds with careful considerations 
of coastal ecosystems in order to promote environmental sustainability and optimal 
land use. Implementing these recommendations can serve as an effective approach 
to managing the coast smartly and efficiently, thus fostering harmony between envi-
ronmental conservation and livelihoods for a sustainable coastal region – especially 
along the eastern coast of Lampung.

4.4.	 Limitations

The application of water indices can facilitate the rapid estimation of aquacul-
ture distribution with enhanced efficiency – particularly the shrimp farms in Lam-
pung Province. Nonetheless, this study faced limitations that were associated with 
the utilization of multispectral satellite imagery. The effectiveness of water indices 
that depend on multiple spectral channels for extracting water bodies from satel-
lite images decreases significantly when the cloud cover exceeds 50%; consequently, 
this method’s ability to distinguish between cloud shadows and actual water bod-
ies was compromised, as both features can exhibit similar spectral characteristics in 
certain bands. This similarity may result in misclassifications and overestimations 
of aquaculture areas. Another limitation lay in the 30-meter spatial resolution of 
the Landsat-8 imagery, which posed challenges in accurately detecting small-scale 
aquaculture ponds; this potentially resulted in omission errors or underestimations 
of aquaculture areas. It is advisable to integrate multi-satellite images in future re-
search to reduce the distortions that are caused by cloud cover. In addition, the use 
of annual data acquisitions that have been collected to produce cloud-free imagery 
has limitations for intra-annual dynamics, thereby reducing the sensitivity of moni-
toring short-term or seasonal variations in aquaculture activities. This limitation can 
be mitigated through gradual mapping from a single acquisition imagery (although 
this requires additional time for analysis).

5.	 Conclusion

This research applied water indices such as  NDWI, MNDWI, WI, and  WRI 
to identify aquaculture areas in the coastal region of East Lampung. Among these 
water indices, WRI that employed the Otsu’s threshold method and RPJMD as the 
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reference data demonstrated results that extracted the aquaculture areas with the 
highest accuracy; this was evidenced by the overall accuracy and kappa coefficient 
(93.3% and 86.7%, respectively). The use of reference data with Google Earth in this 
study proved to be insufficient for maximizing the validation analysis, given its 
trend of low OA values and its low confidence with κ values. As was estimated by 
these water indices between 2018 and 2022, the changes in the aquaculture area ex-
hibited a decreasing trend. This trend correlated with statistical data on shrimp farm 
productivity that was obtained from the national data that was provided by BPS. 
Therefore, the use of water indices that are derived from free cloud data sets through 
a cloud-based engine (particularly GEE) can be regarded as a viable approach for 
estimating any changes in aquaculture areas in East Lampung. This approach pro-
vides a scalable framework that can be adapted for monitoring dynamic aquaculture 
activities in other coastal provinces in Indonesia – particularly those that are facing 
challenges in sustainable coastal management. By providing insights into aquacul-
ture dynamics, the findings support the formulation of conservation strategies and 
sustainable development policies. These contributions align with broader environ-
mental management goals, thus promoting a balance between ecological integri-
ty and economic growth in coastal communities. To further improve the accuracy, 
future research could explore the use of multi-temporal satellite imagery to reduce 
cloud-cover issues. Additionally, integrating productivity data that is obtained from 
farmers over specific periods may enhance the accuracy. More-detailed data integra-
tion has the potential to facilitate rapid, precise, and detailed predictions of produc-
tivity in the forthcoming period. The findings of this study can be incorporated into 
existing coastal zoning and aquaculture licensing systems, providing an evidence-
based tool for supporting spatial planning, permit regulation, and regulatory en-
forcement – particularly in those regions where rapid land-use change threatens 
ecological sustainability.
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