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Abstract: Our ecosystem, particularly forest lands, contains huge amounts of carbon 
storage in the world today. This study estimated the above ground biomass 
and carbon stock in the green space of Bilbao Spain using remote sensing tech-
nology. Landsat ETM+ and OLI satellite images for year 1999, 2009 and 2019 
were used to assess its land use land cover (LULC), change detection, spectral 
indices and model biomass based on linear regression. The result of the LULC 
showed that there was an increase in forest vegetation by 12.5% from 1999 
to 2009 and a further increase by 2.3% in 2019. However, plantation cover had 
decreased by 3.5% from 1999–2009; while wetlands had also decreased by 9% 
within the same period. There was, however, an increase in plantation cover 
from 2009 to 2019 by 2.1% but a further decrease in wetlands of 4.3%. Fur-
ther results revealed a positive correlation across the three decades between 
the widely used Normalized Differential Vegetation Index (NDVI) with other 
spectral indices such as Enhance Vegetation Index (EVI) and Normalized Dif-
ferential Moisture Index (NDMI) for biomass were: for 1999 EVI (R2 = 0.1826), 
NDMI (R2 = 0.0117), for 2009 EVI (R2 = 0.2192), NDMI (R2 = 0.3322), for 2019 
EVI (R2 = 0.1258), NDMI (R2 = 0.8148). A reduction in the total carbon stock 
from 14,221.94 megatons in 1999 to 10,342.44 megatons 2019 was observed. This 
study concluded that there has been a reduction in the amount of carbon which 
the Biscay Forest can sequester.
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1. Introduction

The environment around us today has been impacted to varying degrees by an-
thropogenic activities. The largest terrestrial reservoirs of carbon on our planet are 
in the forest ecosystem which plays an important part in the global carbon cycle [1] 
since it absorbs carbon dioxide through the process of photosynthesis [2]. However, 
in some places around the world, this valuable green environment is being depleted 
as population increases in order to meet needs such as food, energy, construction, 
shelter, etc. The effect of this depletion is the increase in carbon dioxide concentra-
tion, another greenhouse gases in the atmosphere [3] and climate change. Nature 
based solutions are increasingly being promoted, including reforestation and affor-
estation, with the hope that they will enhance the carbon stock and mitigate the 
adverse impacts of greenhouse gases and climate change [4].

Also, the United Nations Framework Convention on Climate Change (UNFCCC) 
committed countries to reducing concentrations of greenhouse gases in the atmo-
sphere, thereby ensuring the “stabilization of greenhouse gas concentrations” which 
will allow the ecosystem time to adapt naturally to climate change [5]. The Kyoto 
Protocol (KP), which was the main implementing instrument, sets emissions targets 
for developed countries which are binding for periods lasting from 2008–2012 and 
another from 2013-2020 for the emissions of different GHGs [6], land use, land use 
change and forestry activities (LULUCF) [7, 8]. Some major industrialized countries 
did not ratify the Kyoto Protocol.

However, there has been an increase in the awareness of the place of the 
green environment in combating climate change, hence the need to determine 
the quantity of forest and how much carbon it can sequester. The Paris Agree-
ment in 2016 recognized the major role forests play in climate change mitigation 
and aimed to limit global warming to less than 2°C, while pursuing efforts to 
limit the rise to 1.5°C compared to the pre-industrial period, and the EU regula-
tion 2018/841 for LULUCF [9]. Also, rules and procedure were defined in Durban 
Climate Change conference [5] that introduced changes to the first commitment 
period (2008–2012) of the Kyoto Protocol to include the mandatory accounting of 
forest management with a new forest carbon accounting method, among others. In 
addition, the EU defined its own target within its Climate Policy Framework 2030 
(2021–2030) to reduce greenhouse gas (GHG) emissions to 40% below 1990 levels 
by 2030 [10].

According to [11], the Spanish forests consist of a varied composition and com-
plex structure of more than 150 tree species, most of which are located within moun-
tainous regions. The forest is dominated by Pinus, Quercus, Fagus, Abies or Betula 
species. The report of [12] stated that in the Mediterranean area, the vegetation in-
cludes the open woodlands (dehesas), dense forests (coppices) dominated by Quercus 
and Fraxinus along with pinewoods, productive plantations of Populus and Euca-
lyptus. Near natural forest coexists with homogeneous coniferous reforestations 
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plantations of Pinus and Eucalyptus in the Atlantic region [12]. The forest biomass of 
Biscay is reported to be about 66% evergreen forests throughout the province, with 
exceptions in Enkarterri and Durango, while in Gipuzkoa about 56% of the trees are 
conifers, and only 28% in Álava [13].

A previous study investigated the biomass production of predominant forest 
species Pinus radiata D. Don and Ecualyptus globulus Labill of Biscay using data 
from the Spanish Forest Inventories and reported that the Forests of Biscay stored 
12.084 teragrams of biomass of dry basis in 2005 and 14.509 terahrams of bio-
mass of dry basis in 2011 [14]. Although, the forest is a renewable resource, its 
accounting and management is vital for sustainability. Remote sensing technology, 
which involves the acquisition of information without coming into direct physi-
cal contact, has over the years been used to assess, quantify and manage forest 
lands. Generally, remote sensing data are recorded by sensors or imaging systems 
carried on platforms including: satellites, aircraft, ground, and unmanned aerial 
vehicles (UAV) etc. The selection of a platform is dependent on a number of fac-
tors which could include, altitude, times, cost, the desired instantaneous field of 
view (IFOV) etc. Its temporal, spectral, radiometric and spatial resolutions enable 
information to be acquired at a variety of scales which enables the modeling of 
forest conditions and changes under different scenarios and from a few cm to 
some km, with the most commonly used device being the optical form [15, 16]. 
Previous studies have shown that remote sensing technology have been used to 
investigate forest growth on a spatial and temporal bases [17]; modeling forest 
cover attributes in a regional context [18]; phenological differences in Tasseled Cap 
indices improve deciduous forest classification [19]; field measurements in esti-
mating the above ground biomass (AGB) of forests [20] and field measurement for 
biomass estimation [21].

Spectral indices which are a combination of spectral reflectance are indicators 
developed on the simple mathematical formula at given wavelengths that describes 
the condition of vegetation and estimate the quantity of biomass [22, 23]. Several 
studies have used satellite based spectral indices as indicators to monitor changes 
to vegetation [24–26]. This study, therefore, used remote sensing to assess the green 
space land cover, spectral indices and biomass of Biscay, Spain from 1999 to 2019; 
evaluated spectral indices for the estimation of biomass and modeled the above 
ground biomass and carbon stocks based on linear regression model.

2. Materials and Methods

2.1. Study Area

The Biscay Province is located in the northern part of Spain located with-
in Latitude 42°57′40′′ N, Longitude 02°21′08′′ W and Latitude 43°34′02′′ N, Longi-
tude 03°29′11′′ W (Fig. 1). It is bordered by the communities of Cantabria and Burgos 
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to the west, the province of Gipuzkoa to the east, and Álava to the south, and the 
Bay of Biscay to the north. According to the standard climate values for Bilbao [27], 
the region’s climate is oceanic and experiences high precipitation all year round. 
The average temperature in cities like Bilbao falls between 13°C in January and 26°C 
in August while there are more extreme temperatures in the higher lands of inner 
Biscay, where snow is more common during winter.

Fig. 1. The location of Biscay in Spain

2.2. Data Acquisition

This study used Landsat TM, ETM+ and OLI covering 1999, 2009 and 2019 with-
in the same season. They are of Level 2 processing acquired from earthexplorer.usgs.
gov in the United States Geological Surveys (USGS) Global Visualization online por-
tal. To correct for measurement and geometry computation difficulties, all images 
and administrative shape files were harmonized to fit into a uniform coordinate 
system ETRS89 UTM 30N. In addition, Google Earth Image was used as ancillary 
data for this study. Table 1 shows more information on the data.
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Table 1. Landsat datasets used in this study

Year Sensor Scene ID Path/Row Date 
acquired

Resolution
[m]

1999 TM LT05_L1TP_201030_19990929_20180217_01_T1_sr 201/030 1999-09-29 30.0

2009 ETM+ LT05_L1TP_201030_20090908_20161021_01_T1_sr_ 201/030 2009-09-08 30.0

2019 OLI LC08_L1TP_201030_20190920_20190926_01_T1_sr_ 201/030 2019-09-20 30.0

2.3. Satellite Image Pre-Processing

These images were subsequently subjected to digital image processing (DIP) 
in ERDAS Imagine 2014 and ArcGIS Pro software; and the bands stacked. In layer 
stacking, the extracted individual bands for each Landsat scene were stacked into 
a single multispectral scene and a subset of the Area of Interest (AOI) extracted [28]. 
This was clipped to the administrative boundary shape file (.shp) of the Basque 
Country for analysis.

2.4. Land Cover Classification

This processed subset image was categorized into five land cover class-
es for interpretation after the order of the Anderson Land Cover Classification 
Scheme [21, 29, 30]. The land cover classes are: built-up, water body, forest, planta-
tion and wetlands. Next, a step-by-step process of training sample selection using 
a combination of the spectral signatures of each class and data from Google Earth 
was performed. The image signature editor in ERDAS Imagine 2014 software was 
used to facilitate the delineation and extraction of training samples and imagine sig-
natures using the Maximum Likelihood Algorithm/Bayesian classifier [31].

The maximum likelihood decision rule is based on the probability that a pixel 
belongs to a specific class. The basic equation assumes that these probabilities are 
equal for all classes, and that the input bands have normal distributions. The equa-
tion for the maximum likelihood/Bayesian classifier is as follows [31]:

 1ln( ) [0.5ln(| cov |)][0.5( ) (cov ) ( )]−= − − −D ac c X Mc T c X Mc  (1)

where:
 D – weighted distance (likelihood),
 c – particular class,
 X – measurement vector of the candidate pixel,
 Mc – mean vector of the sample of class c,
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 ac – percent probability that any candidate pixel is a member of class c 
(defaults to 1.0, or is entered from a priori knowledge),

 cov c – covariance matrix of the pixels in the sample of class c,
 |cov c| – determinant of cov c (matrix algebra),
 (cov c)–1 – inverse of cov c (matrix algebra),
 ln – natural logarithm function,
 T – transposition function (matrix algebra).

The pixel is assigned to the class, c, for which D is the lowest.
Once the maximum likelihood algorithm (also called the supervised classifica-

tion) was performed on each of the Landsat images, they were checked for accuracy. 
This accuracy assessment was done using the Google Earth Imagery data as the 
referenced data and the classified image as the observed data.

2.5. Land Use Land Cover Change (LULCC)

Land use land cover change involves assessing the changes that have taken 
place between different land cover types over a period of time. This can be com-
puted in terms of a percentage [32]. The LULCC to determine the trend from 1999 
to 2019 was calculated using:

 P = {(A – B)/B}∙100 (2)

where:
 P – percentage change of land use/land cover for a particular purpose within 

a specified time interval,
 A – area under that particular purpose of land use/land covers after the time 

interval,
 B – area under that particular purpose of land use/land covers before the 

time interval.

2.6. Spectral Indices

Several studies have established the use of spectral indices to assess the green-
ness, health status and chlorophyll content of forest vegetation which is done by us-
ing various band combination for its computation [33–36]. In this study, five spectral 
indices were performed using Landsat images of 1999 to 2019 for this study. These 
indices majorly covered bands for forest, water and built-up areas. The following 
relevant spectral indices were used to assess the study area:

Normalized Differential Vegetation Index (NDVI)
The NDVI measures the health/green vegetation. Vegetation reflects highest in 

the near infrared band than the red band. This is a combination of its normalized 
difference formulation and use of the highest absorption and reflectance regions of 
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chlorophyll [37]. The value of this index ranges from −1 to 1, where −1 means no 
vegetation and 1 means high vegetation:

 (NIR − Red)/(NIR + Red) (3)

Normalized Differential Built-Up Index (NDBI)
This index enhances urban areas giving it a higher reflectance in the short-

wave-infrared (SWIR) region, compared to the near-infrared (NIR) region [37]:

 NDBI= (SWIR − NIR)/(SWIR + NIR) (4)

Modified Normalized Differential Water Index (MNDWI)
This index maximizes the reflectance of water by using green wavelengths and 

minimizes the low reflectance of NIR by water features [38]. Thus, the water features 
are enhanced and have positive values while vegetation and soil are suppressed, 
usually have zero or negative values:

 NDWI = Green – NIR/Green + NIR (5)

where:
 Green – green band such as TM band 2 (Landsat 7 and band 3 for Landsat 8),
 NIR – near infrared band such as TM band 4 (Landsat 7 and band 5 for 

Landsat 8).

Enhanced Vegetation Index (EVI)
This index is used to quantify vegetation greenness and is similar to the Nor-

malized Difference Vegetation Index (NDVI), however, this corrects for some atmo-
spheric conditions and canopy background noise and is more sensitive in areas with 
dense vegetation [39]. EVI values should range from 0 to 1 for vegetation pixels:

 EVI = 2.5(NIR − RED)/(NIR + 6RED − 7.5BLUE) + 1 (6)

Normalized Differential Moisture Index (NDMI)
This index is used to determine the vegetation water content using the ratio be-

tween the NIR and SWIR. The SWIR reflects the changes in both the vegetation water 
content and the spongy mesophyll structure in vegetation canopies, while the NIR 
is affected by leaf internal structure and leaf dry matter content and not by water 
content [40]. The valid range is from −10,000 to 10,000 and a scale factor of 0.0001:

 (NIR − SWIR)/(NIR + SWIR) (7)

In Landsat 4–7, NDMI = (Band 4 – Band 5)/(Band 4 + Band 5).
In Landsat 8, NDMI = (Band 5 – Band 6)/(Band 5 + Band 6).
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2.7. Biomass Computation

All the bands that reflect vegetation and biomass can be quantified; howev-
er, the near infrared band absorbs most of the chlorophyll it receives and reflects 
vegetation at its highest. In this study, band 4 was used in computing the biomass 
for TM, ETM+ and band 5 for OLI images of Landsat. This applies to 1999 and 2009 
and band 5 for 2019. About 30 random points (vector) of forest biomass were select-
ed from the Landsat images and only 29 points returned with biomass values. It is 
possible that one point was out of the study area (Biscay). This analysis was done in 
QGIS 3.4 software. Linear regression was used correlate the relationship between in-
dices. Furthermore, the above ground biomass (AGB), below ground biomass (BGB) 
and carbon stock was computed. The AGB was computed by first removing pixel 
without data, then reclassifying and assigning classes to them. The zonal statistics 
was computed and used to compute the biomass based on the number of pixels (for 
forest, plantation and wetlands with vegetation classes) multiplied by the spatial 
resolution of the image and its mean. The equation is [41]:

 ton of AGB = number of cells ∙ (30 m ∙ 30 m) ∙ 100 ha ∙ mean AGB value [ton/ha] (8)

The BGB is 20% of the AGB. To compute for the total carbon stock, the total 
carbon density or total carbon stock was converted to CO2 by multiplying carbon 
density or stock by 3.67. This is the ratio of molecular weights between carbon diox-
ide and carbon [42].

3. Results

3.1. Land Use Land Cover Classification
The result of the land use land cover classification of Biscay can be seen in Figure 2.

Fig. 2. Classified Landsat images
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The classification accuracy was assessed, and the image of 1999 had an accuracy 
of 86.30% and a kappa statistic of 0.79, and the 2009 image had an accuracy of 90.14% 
and a kappa statistic of 0.83 while 2019 image had an accuracy of 92.94% and kappa 
of 0.87.

3.2. Land Use Land Cover Change

The area covered by various land cover classes and their percentage changes in 
Biscay over a three decade period can be seen in Table 2.

Table 2. Land use land cover change from 1990 to 2019 of Biscay, Spain

Class 
name

Area covered [ha] 1999–2009 2009–2019 1999–2019

1999 [%] 2009 [%] 2019 [%] area 
[ha]

change
[%]

area 
[ha]

change
[%]

area 
[ha]

change
[%]

Built-up 16,995 7.7 22,634 10.2 21,558 9.7 5,638 2.5 −1,076 −0.5 4,563 2.058

Water 
body 6,120 2.8 656 0.3 1,586 0.7 −5,464 −2.5 930 0.4 −4,534 −2.046

Forest 75,632 34.1 103,290 46.6 108,284 48.9 27,658 12.5 4,994 2.3 32,652 14.731

Plantation 91,630 41.3 83,788 37.8 88,448 39.9 −7,842 −3.5 4,660 2.1 −3,181 −1.435

Wetlands 31,280 14.1 11,290 5.1 1,781 0.8 −19,990 −9.0 −9,509 −4.3 −29,499 −13.308

TOTAL 221,658 100 221,658 100 221,658 100 – – – – – –

The land use land cover shows that there has been an increase in the forest 
vegetation by 12.5% from 1999 to 2009 and a further increase by 2.3% in 2019. How-
ever, the plantation area decreased by 3.5% from 1999 to 2009; while wetlands also 
decreased by 9% within the same period. There was, however, an increase in plan-
tation areas from 2009 to 2019 by 2.1% but a further decrease in wetlands of 4.3%. 
In addition, it was observed that the water body had decreased by 2.5% from 1999 
to 2009 but increased by 0.4% by 2019. The built-up area increased by 2.5% 
from 1999 to 2009 and seems to have decreased by 0.5% by 2019. While 0.5% could 
be an insignificant change over a period of ten years, it is possible that some struc-
tures that were present in 2009 had been pulled down by 2019. Also, inference could 
be made from the type of sensors used to acquire both data in which Landsat 8 sen-
sor can discriminate more finely than the Landsat 7. However, there was an overall 
increase in built-up areas from 1999 to 2019 of 4,563 ha while water bodies, planta-
tions and wetlands had decreased by 4,534 ha, 3,181 ha, and 29,499 ha respectively.
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3.3. Spectral Indices

The result of the five spectral indices is shown below in pseudo colour (Figs. 3–5). 
The result indicates the varying change that has taken place over the years obvious 
in their grey colour as the years increase. It was observed that highest values for 
the NDVI in 1999 was 0.94 and the lowest −0.57. The NDBI values ranges from 0.36 
to −1.14, MNDWI from −0.76 to 1.12, EVI from −0.16 to 0.7, NDMI from −0.4 to 1.09, 
NDVI in 2009 was 0.92 and the lowest −0.27. The NDBI values ranges from −0.66 
to 0.2, MNDWI from −0.71 to 0.77, EVI from −0.02 to 0.76, NDMI from −0.3 to 0.74, 
NDVI in 2019 was 1.7 and the lowest −0.5. The NDBI values ranges from −0.66 to 0.36, 
MNDWI from −4.4 to 0.77, EVI from −0.035 to 0.81, and NDMI from −0.28 to 0.66. It 
can be clearly seen that the NDVI values seems to have increased for 1999 to 2019 
while the EVI values reduced within the same period. The EVI which is used to 
quantify vegetation greenness corrects for some atmospheric conditions and cano-
py background noise and is more sensitive in areas with dense vegetation [39] and 
probably more accurate.

   

         NDVI         NDBI           MNDWI                EVI      NDMI 

Fig. 3. Spectral Indices for 1999
Source: own elaboration derived from Landsat using QGIS 3.4 software

   
          NDVI         MNDWI                EVI               NDMI NDBI

Fig. 4. Spectral Indices for 2009
Source: own elaboration derived from Landsat using QGIS 3.4 software

  
        NDVI             NDBI           MNDWI              EVI          NDMI  

Fig. 5. Spectral indices for 2019
Source: own elaboration derived from Landsat using QGIS 3.4 software
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It can be observed from Figure 5 that there are varying intensity changes of all 
the spectral indices over the three decades. From the NDVI and EVI, it is clear that 
the luxuriant forest biodiversity, greenness and chlorophyll content found in 1999 
had diminished by 2019; however, the MNDWI and NDMI increased within the 
same period.

3.4. Spectral Indices and Biomass Computation

The result of the random points (vector) of forest biomass selected from the 
Landsat images and the spectral indices for the three decades are shown in Ta-
bles 3–5. The values are the reflectance values in which during the preprocessing, 
digital numbers (DN) were converted to radiance and radiance to reflectance. 
The NDVI which is the most common vegetation spectral indices was used to cor-
relate its relationship to other indices using the linear regression (Figs. 6–8) for the 
three decades.

Table 3. Biomass assessment using spectral indices for 1999

Band 4 (1999) NDVI NDMI NDBI MNDWI EVI

1704 0.85925 0.46141 −0.46141 −0.55062 0.33986

2741 0.85768 0.35559 −0.35559 −0.58999 0.50646

1605 0.82386 0.38124 −0.38124 −0.53632 0.31770

2388 0.83481 0.32116 −0.32116 −0.56805 0.44120

857 0.75077 0.76337 −0.76337 0.19580 0.17203

1232 0.80513 0.47810 −0.47810 −0.40323 0.24636

2124 0.79544 0.44343 −0.44343 −0.44063 0.38063

1604 0.85756 0.50398 −0.50398 −0.50712 0.32465

1465 0.84277 0.40124 −0.40124 −0.47642 0.29607

2025 0.84679 0.45736 −0.45736 −0.53096 0.38670

2536 0.85177 0.35797 −0.35797 −0.63129 0.46654

2614 0.84474 0.39637 −0.39637 −0.53117 0.48692

2684 0.86130 0.34874 −0.34874 −0.55210 0.50543

2067 0.75392 0.40231 −0.40231 −0.45500 0.35684

2216 0.83216 0.50800 −0.50800 −0.45473 0.41828

3648 0.80193 0.34637 −0.34637 −0.54740 0.59386

2863 0.77276 0.32577 −0.32577 −0.58606 0.47525
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Band 4 (1999) NDVI NDMI NDBI MNDWI EVI

3512 0.77778 0.23271 −0.23271 −0.55976 0.55859

2986 0.79988 0.33662 −0.33662 −0.58928 0.50349

3911 0.86371 0.40937 −0.40937 −0.62680 0.64458

3901 0.80979 0.33231 −0.33231 −0.60509 0.59999

3831 0.82864 0.30885 −0.30885 −0.62621 0.62078

3836 0.79336 0.25998 −0.25998 −0.59844 0.59941

4407 0.89182 0.38869 −0.38869 −0.63368 0.73964

3283 0.86006 0.49635 −0.49635 −0.49123 0.55953

3377 0.80540 0.32692 −0.32692 −0.57012 0.55494

3016 0.85144 0.54667 −0.54667 −0.46966 0.54744

2028 0.85629 0.45847 −0.45847 −0.55901 0.40968

995 0.70962 0.30663 −0.30663 −0.48107 0.18947

Source: own elaboration derived from Landsat

Table 3. cont.

Fig. 6. The linear regression of the spectra indices for 1999
Source: own elaboration derived from Landsat
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Table 4. Biomass assessment using spectral indices for 2009

Band 4 (2009) NDVI NDMI NDBI MNDVI EVI

1915 0.80151 0.51924 −0.51924 −0.38041 0.36076

2933 0.85164 0.36102 −0.36102 −0.63734 0.51585

2084 0.77362 0.32697 −0.32697 −0.51 0.38501

3023 0.82769 0.35167 −0.35167 −0.56082 0.51522

2630 0.83531 0.45908 −0.45908 −0.47839 0.48311

1621 0.71172 0.36909 −0.36909 −0.42286 0.28751

2380 0.70793 0.30769 −0.30769 −0.49733 0.38955

1574 0.80195 0.37407 −0.37407 −0.45732 0.30511

1615 0.80246 0.41916 −0.41916 −0.42304 0.31971

2157 0.84912 0.47185 −0.47185 −0.48134 0.41721

2488 0.87138 0.36068 −0.36068 −0.58508 0.47097

2150 0.73808 0.17679 −0.17679 −0.60341 0.37337

2913 0.78657 0.37926 −0.37926 −0.49317 0.48881

2033 0.75865 0.39199 −0.39199 −0.43226 0.36099

2537 0.78098 0.51871 −0.51871 −0.5127 0.42473

2529 0.69504 0.17902 −0.17902 −0.53866 0.41359

2949 0.69629 0.20762 −0.20762 −0.46425 0.4821

3786 0.78965 0.37075 −0.37075 −0.455 0.59614

2569 0.80407 0.41777 −0.41777 −0.54466 0.44716

2600 0.82328 0.37095 −0.37095 −0.57492 0.46877

4096 0.84963 0.38777 −0.38777 −0.56247 0.66161

3720 0.86047 0.41606 −0.41606 −0.55185 0.63352

3699 0.78351 0.32604 −0.32604 −0.51186 0.58096

4087 0.85773 0.35556 −0.35556 −0.6273 0.66014

2493 0.82104 0.42661 −0.42661 −0.52511 0.44425

3040 0.79722 0.30249 −0.30249 −0.58135 0.52448

2797 0.84499 0.54105 −0.54105 −0.41667 0.50227

2157 0.82565 0.41721 −0.41721 −0.48701 0.40076

1997 0.81876 0.31989 −0.31989 −0.54621 0.38722

Source: own elaboration derived from Landsat
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Table 5. Biomass assessment using spectral indices for 2019

Band 5 2019 NDVI NDMI NDBI MNDWI EVI

3076 0.75471 0.25041 −0.25041 −0.57877 0.47689

2536 0.85992 0.38541 −0.38541 −0.58117 0.46771

2063 0.83459 0.38689 −0.38689 −0.53924 0.38593

3079 0.87003 0.36571 −0.36571 −0.64368 0.54106

1843 0.83201 0.40526 −0.40526 −0.5087 0.3604

2577 0.7681 0.34254 −0.34254 −0.51774 0.42934

2487 0.8395 0.52905 −0.52905 −0.45213 0.44107

1666 0.8793 0.46526 −0.46526 −0.54315 0.33504

1759 0.87028 0.46036 −0.46036 −0.57959 0.3433

2485 0.85933 0.40197 −0.40197 −0.59279 0.45519

2349 0.85472 0.35702 −0.35702 −0.60722 0.43904

2671 0.86132 0.4032 −0.4032 −0.55297 0.49499

2212 0.86588 0.39032 −0.39032 −0.59408 0.41589

2306 0.84333 0.53939 −0.53939 −0.43451 0.42202

Fig. 7. The linear regression of the spectral indices for 2009
Source: own elaboration derived from Landsat
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3440 0.66788 0.20829 −0.20829 −0.50668 0.48952

3493 0.87745 0.40563 −0.40563 −0.58988 0.61195

3477 0.79969 0.32837 −0.32837 −0.55506 0.58339

3580 0.74336 0.2557 −0.2557 −0.49017 0.56

3847 0.66645 0.10419 −0.10419 −0.61878 0.50945

2669 0.28658 -0.14 0.14 −0.49915 0.18658

4392 0.83153 0.33699 −0.33699 −0.62719 0.65739

3197 0.87562 0.49149 −0.49149 −0.56272 0.56082

3696 0.82383 0.35957 −0.35957 −0.50216 0.60696

4116 0.87988 0.41687 −0.41687 −0.61487 0.68151

4272 0.77593 0.27389 −0.27389 −0.57147 0.64269

2842 0.80158 0.37761 −0.37761 −0.51415 0.49656

3137 0.83773 0.51144 −0.51144 −0.50781 0.53223

2388 0.85764 0.43596 −0.43596 −0.55041 0.43877

1401 0.86551 0.48568 −0.48568 −0.49691 0.28305

Source: own elaboration derived from Landsat

Fig. 8. The linear regression of the spectra indices for 2019
Source: own elaboration derived from Landsat

Table 5. cont.
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3.5. Biomass Computation

This was performed by removing the pixels with no data, then reclassifying 
the entire image of the study area, computing the zonal statistics and subsequently 
computing the above ground biomass. The result of the estimated above ground bio-
mass for the three decades of the entire study area for three land cover types: forest, 
plantation and wetland are presented in Table 6.

Table 6. Estimated above ground biomass from 1999–2019

Land cover type

1999 2009 2019

aval. AGB
[ton]

aval. AGB
[ton]

aval. AGB
[ton]

Forest 803,230,955 743,772 501 948,350,763

Plantation 1,413,018,035 1,010,347 650 1 401,205,158

Wetland (with vegetation) 1,013,074,524 785,085,389 –

TOTAL ABOVE GROUND BIOMASS 3,229,323,514 2,539,205,540 2,349,555,921

It can be seen from Table 6 that there is no value for the wetland land cover type 
for 2019. This is because there was a decrease in the wetland area from 2009 to 2019 
of 4.3%, as seen in Table 2. Thus, the amount of vegetation in wetlands was drasti-
cally reduced. Although there was an increase in the forest cover from 2009 to 2019, 
there was no vegetation (biomass) in the wetlands to be accounted for.

3.6. Below Ground Biomass (BGB)

BGB is estimated from AGB using a non-destructive method [43]. This method 
uses 20% of the above ground biomass to compute the below ground biomass values 
for vegetation [21, 43]:

 BGB = 0.2 ∙ AGB (9)

In 1999:
BGB = 0.2 ∙ 3,229,323,514 = 645,864,703 ton/ha.

In 2009:
BGB = 0.2 ∙ 2,539,205,540 = 507,841,108 ton/ha.

In 2019:
BGB = 0.2 ∙ 2,349,555,921 = 469,911,184 ton/ha.
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3.7. Carbon Stock

The total carbon density or total carbon stock was converted to CO2 by mul-
tiplying carbon density or stock by 3.67. This is the ratio of molecular weights be-
tween carbon dioxide and carbon [42]. The result is shown below.

 CO2 = Total Carbon Stock ∙ 3.67 (10)

In 1999:
CO2 = 14,221,940,756 ton/ha
14,221.94 megaton of carbon.

In 2009:
CO2 = 11,182,661,198 ton/ha
11,182.66 megaton of carbon.

In 2019:
CO2 = 10,347,444,276 ton/ha
10,347.44 megaton of carbon.

Thus, the total carbon sequestered by Biscay Forest is estimated to have been 
14 megatons in 1999, 11 megatons in 2009 and 10 megatons in 2019.

4. Discussion

4.1. Land Use Land Cover

This study revealed that Landsat images can be used to assess the land use 
land cover change and carbon stock over a period of three decades. This study re-
vealed that the land cover types of forest, plantation and wetlands in 1999 covered 
about 75,632 ha, 91,630 ha, and 91,280 ha respectively. However, changes occurred 
over the decades, with these values being replaced by 108,284 ha (forest), 88,448 ha 
(plantation), and 1781 ha (wetland) by 2019. According to Spanish National Forest 
Inventory, Spain has a total forest area of about 50,560,000 ha which is divided be-
tween 50 of its provinces and 17 of its communities [11]. Thus, the Spanish green 
space is rich and buoyant. However, the findings from this study revealed some 
dynamics in which forest lands seem to have increased from 1999 to 2019 by 14.7% 
while plantation areas have been reduced by 1.4%. It was observed that the wetland 
areas were reduced by 13.3% within the same period. The increase in forest lands 
could be as a result of private forest ownership. Alberdi et al. [11] reported that 
about 70.89% of the forest in Spain is privately owned. This makes for proper ef-
ficient management and control of anthropogenic activities (deforestation). The 
changes in plantation land cover type observed in this study (which include farm-
lands) reduced by 1.4% while built-up areas increased by 2.1% from 1999 to 2019. It 
is likely that certain farmland was replaced by structural development as population 
increased over the three decades.



38 E.O. Makinde, C.M. Andonegui, A.A. Vicario

In addition, there was a drastic change observed in the wetlands of Biscay. 
The wetlands are fast disappearing and were reduced by 13% from 1999 to 2019. 
Climate change could be a major contributory factor to this reduction. The water 
body was also affected as it fell by 2%. Another factor may be the heating up of the 
region as the population of Biscay increases over the years. This agrees with [44] 
which reported that pasture and population centres were sources of the emission of 
about 0.18 million Mg of CO2.

4.2. Spectral Indices

This study used spectral indices to assess changes in the biomass of Biscay. 
The indices are used to monitor the greenness and health of the vegetation. It was 
observed that biomass had undergone one form of change or another over the last 
three decades. Random points (vector) extracted from the Landsat multispectral 
bands were compared to the spectral index images over the years. These random 
points and values were extracted from the bands with the highest reflectance: band 4 
of Landsat 5–7 and band 5 of Landsat 8 and used to compute the linear regression. 
Linear regression was used to correlate the relationship between indices. This study 
correlated for the four indices with the NDVI to ascertain its relationship. NDVI is 
widely known to measure the health/greenness of vegetation [45]. Findings revealed 
that NDVI, EVI, and NDMI had a direct correlation with the forest biomass of the 
region. NDBI and MNDWI had a negative relationship to biomass. Moisture had 
a positive correlation to biomass than water. It was observed, however, that the 
moisture content had been reduced from 1999 to 2019. This could be seen in the 
values of the NDMI over the years. This could also be one of the reasons for the re-
duction in the overall greenness of Biscay over the last three decades as observed in 
the land cover classification.

4.3. Computing Biomass and Carbon Stock

This study used remote sensing technology to compute the biomass of Bis-
cay over three decades. The findings revealed that the total above ground biomass 
(which includes forest, plantation and wetland areas with vegetation) had fallen 
from 1999 to 2019. It was further revealed that by 2019, there were no wetlands with 
vegetation to be found in Biscay. This affected the quantity of biomass in this region. 
The below ground biomass had also reduced from approximately about 646,000,000 
ton/ha in 1999 to about 470,000,000 ton/ha in 2019. Furthermore, the total carbon 
density or total carbon stock was converted to CO2 (2012). The findings revealed 
that amount of carbon that the green spaces of Biscay will be able to sequester had 
also fallen over the decades. The amount of carbon being sequestered was 14,221.94 
megatons in 1999 but had fallen to 10,347.44 megatons by 2019.
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5. Conclusion

This study used remote sensing technology to assess forest biomass in Biscay, 
with field measurements not being conducted in this study. Biomass computation 
and assessment uses spectral indices. Therefore, a forest landmass can increase but 
its content including the greenness of the forest can recede. Spectral indices give in-
formation about NDVI, EVI, the chlorophyll content etc. of forest cover. The spectral 
reflectance of plant species of the forest in 1999 is higher than that of 2009 despite the 
increase in land mass. This can be seen by the intensity of the greenness in Figure 5. 
In addition, the findings show that most of the recent forest cover in Biscay is not 
primary forest, but forest-regrowth.

Landsat images of the three periods (1999–2019) were used to assess the green 
space of Biscay. Although the Biscay province is still a green environment, the 
amount of carbon it can sequester has fallen over the years. Green space and for-
est play a vital role in mitigating the impact of climate change and thus should be 
managed adequately. It seems the existence of private forests have had a positive 
impact on the biomass quantity of Biscay and thus this should be promoted. Also, 
the planting of trees and other forest policies that enhance sustainability should be 
strongly encouraged.
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