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Abstract:	 This study explores the relationship between population growth and urban 
expansion as well as their impacts on climate and environmental parame-
ters in Berau Regency, Indonesia. Using night-light data and land use/land 
cover (LULC) analysis from 2019 through 2023, the research identified signif-
icant urban growth, with night-lit areas doubling and a population increase 
from 232,290 to 280,990. Urban expansion led to notable land conversion, re-
ducing vegetated areas by 18,202.38 ha, while built-up and open land grew 
by 11,768.6 ha and 5,989.74 ha, respectively. These changes impacted environ-
mental conditions, with non-vegetated areas experiencing higher land-surface 
temperatures  (31–34°C) and lower rainfall  (5,000–6,000  mm/year) compared 
to the cooler and wetter vegetated areas (20–21°C; 7,000–8,000 mm/year). The 
findings emphasized vegetation’s role in regulating temperature and rainfall, 
highlighting the environmental risks of urbanization and the need for sustain-
able land management to mitigate climate impacts in growing cities.
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1.	 Introduction

Urbanization is a global process that significantly reshapes physical landscapes, 
ecosystems, and local climate systems [1]. In Indonesia, this trend has become in-
creasingly evident – particularly in secondary urban areas and developing regions 
such as Berau Regency in East Kalimantan Province. Although Berau is classified as 
a 3T region (disadvantaged, frontier, and outermost), it is currently undergoing rap-
id development – especially in line with the planned relocation of Indonesia’s capital 
city to Nusantara in East Kalimantan. The trend is especially evident in secondary 
urban regions, including Berau Regency in East Kalimantan. Despite its classifica-
tion as a 3T region, Berau has undergone accelerated development, largely influ-
enced by the planned relocation of Indonesia’s capital to Nusantara.

The relocation of the national capital has been shown to stimulate regional 
economic activity, infrastructure growth, and employment expansion across Kali-
mantan [2]. This transformation makes Berau an interesting case study, as regional 
development is expected to directly influence the pace of the urbanization and spa-
tial transformation in the surrounding areas [3]. Furthermore, the establishment of 
IKN Nusantara has triggered extensive land-use transitions and internal migration 
to nearby regions such as Balikpapan, Penajam Paser Utara, and Samarinda; this can 
potentially extend to Berau’s administrative region [4].

The BPS-Statistics Indonesia (Berau Regency) [5] reported that the population 
rose from 232,287 in 2019 to 280,998 in 2023, thus reflecting the rapid pace of ur-
ban expansion. This growth has triggered notable changes in land use and land 
cover  (LULC) – particularly through the conversion of agricultural and forested 
areas into urban built-up zones  [6,  7]. These changes have affected various envi-
ronmental aspects, including increased land-surface temperatures (LSTs) and shifts 
in local precipitation patterns. The urban-heat-island (UHI) effect (which is primar-
ily caused by the reduction of vegetated land) has been observed in many rapid-
ly growing tropical cities; it has contributed to elevated surface temperatures and 
microclimatic instability  [8]. Unplanned land conversion such as the transforma-
tion of natural or agricultural areas into residential or industrial zones can dam-
age local ecosystems and increase environmental risks such as flooding and land 
degradation [9].

To date, urban-area monitoring has generally focused on LULC dynamics with-
out comprehensively linking them to environmental aspects. In fact, LULC changes 
have had significant implications for environmental quality, such as rising surface 
temperatures, altered water flow patterns, vegetation degradation, and declining 
air quality.

From a theoretical perspective, urban ecology and landscape change theories 
explain that land conversion from vegetated and permeable surfaces to built-up 
and impervious ones directly affects the urban microclimate and ecological balance. 
The UHI theory posits that increasing impervious surfaces enhances heat storage, 
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reduces evapotranspiration, and alters the surface albedo, thus leading to higher 
land surface temperatures and deteriorating environmental comfort [10, 11]. Simi-
larly, landscape ecology emphasizes the role of spatial structure and fragmentation 
in influencing ecosystem functions, including vegetation covers, biodiversity, and 
hydrological regulation.

In hydrological theory, the modification of natural land cover alters runoff, in-
filtration rates, and water-retention capacity; these can exacerbate flood risks, reduce 
water quality, and disturb groundwater recharge processes  [12]. The coupling of 
land transformation and urban climatic response therefore represents a core dimen-
sion of sustainable urban studies – especially in rapidly developing regions.

In Berau Regency, the use of remote-sensing technology to monitor urban de-
velopment remains limited; yet, this technology holds great potential for providing 
accurate and sustainable spatiotemporal data for analyzing regional transforma-
tions and their environmental impacts. This study utilized multi-resolution satellite 
imagery, including night-time light (NTL) data as a valuable indicator of urbaniza-
tion and human activity. Advances in remote sensing have enabled the monitor-
ing of built-up areas and the spatial distribution of artificial lighting, which reflects 
patterns of population growth and infrastructure development  [13]. NTL  serves 
as a crucial tool for analyzing the spatial and environmental implications of urban 
growth. Increased night-time light intensity often correlates with higher economic 
activity and rising infrastructure demands [14].

In this study, the NTL data was not only employed as an indicator of human 
activity but was also systematically integrated with LULC  classifications, annual 
temperatures, annual rainfall, and population density data to analyze their inter-
relationships. This integration allowed for an examination of how urban expansion 
(reflected through increased light intensity) corresponded with changes in land 
cover and climatic parameters. Previous studies  [13,  15] have demonstrated the 
growing utility of NTL data in urban research – particularly when combined with 
Landsat imagery – to examine land use trends and their socioeconomic impacts. Ad-
ditionally, a meta-analysis by [16] confirmed the effectiveness of DMSP/OLS night-
light imagery in capturing urban landscape changes and their environmental 
consequences [17].

Through this integrated approach, the study seeks to develop a comprehen-
sive understanding of the correlation between land-change dynamics, variations 
in NTL intensity, and fluctuations in climatic parameters. The integration of multi-
source data enables a more nuanced interpretation of urbanization processes – par-
ticularly how the spatial expansions of built-up areas and increasing light emissions 
at night reflect anthropogenic pressures on the local environments. By correlating 
land-use transitions with NTL-derived indicators of human activity and annual cli-
matic variables such as temperature and rainfall, the study aims to identify poten-
tial linkages between urban growth, microclimatic modification, and environmental 
sustainability.



96	 S.M. Purnama, L.A. Karondia

To support the analysis, various multi-resolution data sets were employed, in-
cluding NTL data from the Visible Infrared Imaging Radiometer Suite (VIIRS) (at 
a 500-meter spatial resolution), Sentinel-2 imagery (at a 10-meter resolution) for 
LULC classification, and Landsat 8/9 imagery (as complementary spatial referenc-
es). The climate variables were obtained from  CHIRPS (Climate Hazards Group 
InfraRed Precipitation with Station) data, which provides precipitation data at 
a spatial resolution of 5.5 km.

The primary objectives of this study were as follows:
	– To detect urban-development patterns NTL data from 2019 through 2023 and 

examine its relationship with population growth.
	– To map and quantify changes in LULC over the period of 2019 through 2023.
	– To analyze the relationship between LULC changes and climate variables – 

particularly LST and precipitation.

By integrating multi-sensor data and time-series analysis, this study offers new 
insights into the interactions between urban growth and environmental changes in 
ecologically sensitive regions. The findings are expected to support sustainable ur-
ban planning and environmental policymaking by providing a clearer understand-
ing of how human activities influence regional climate variability.

2.	 Data and Methodology

2.1.	 Study Area

This study focused on Berau Regency, which is located in East Kalimantan Prov-
ince, Indonesia (as illustrated in Figure 1). Classified as a 3T region (underdeveloped, 
frontier, and outermost), Berau is currently experiencing significant development; 
this is being driven by population growth and expanding economic activities – par-
ticularly in the mining and plantation sectors. The regency also holds considerable 
potential for ecotourism – especially in its coastal and island regions (including De-
rawan Island, Maratua Island, and the Sangkulirang-Mangkalihat Karst landscape, 
which are recognized as key natural tourism destinations in East Kalimantan).

The physical landscape of Berau is characterized by a heterogeneous mix of 
dense tropical forests, agricultural plantations, mining zones, and rapidly expand-
ing built-up areas. This ecological and socio-economic diversity renders Berau 
a strategic case study for analyzing urban-growth patterns and their associated en-
vironmental transformations.

2.2.	 Data Sources

This study utilized both spatial and non-spatial data for the years of 2019, 2021, 
and 2023. This research used both vector and raster format geospatial data that was 
sourced from various providers (as detailed in Table 1).
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Table 1. Research spatial data

Data Type Format Data Year Indicator Observed Source

Sentinel-2 raster 2019, 2021, 
and 2023

land-cover classification and 
change detection Google Earth Engine

Landsat-8 raster 2019, 2021, 
and 2023 land-surface temperatures Google Earth Engine

Night-time 
light data raster 2019, 2021, 

and 2023
Night-time light intensity 

(urbanization proxy) Google Earth Engine

Precipitation 
data raster 2019, 2021, 

and 2023
total annual precipitation 

[mm/year] Google Earth Engine

Spatial data: 
boundary 
shapefiles

vector – administrative boundaries 
(district/sub-district level)

Indonesia Geospatial 
Information Agency

Source: Data Processing, 2024

Fig. 1. Study area
Source: Data Processing, 2024
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The primary spatial data sets included the following:
	– Sentinel-2 imagery (10-meter resolution) for LULC classification;
	– VIIRS NTL data for urban illumination intensity (500-meter resolution);
	– Landsat 8/9 (Band 10) for LSTs;
	– CHIRPS precipitation data for annual rainfall trends.

Non-spatial data (including population density statistics) were sourced from the 
BPS-Statistics Indonesia to analyze demographic trends and their relationships with 
urban expansion. The NPP-VIIRS data set covered the years of 2019, 2021, and 2023, 
with a spatial resolution of 500 m by 500 m. This data set captured artificial lighting 
at night, thus allowing for assessments of urbanization trends. The potential appli-
cations of this data are vast, including urban planning, environmental monitoring, 
and socioeconomic research [17].

2.3.	 Methodology

This research utilized cloud computing technology (specifically, Google Earth 
Engine) for processing geospatial data. Google Earth Engine is used to process sat-
ellite images and data that are related to land changes, surface temperatures, and 
night-time lighting. Additionally, the research enhanced the analysis by examining 
the correlation between population density and the expansions of built-up areas 
using statistical techniques, thus providing a more comprehensive understanding of 
the relationship between urbanization and environmental factors within the study 
area. The research methodology is illustrated in Figure 2.

Figure 2 provides an overview of the research process by outlining the various 
stages and their interconnections. The research data consisted of both spatial and 
non-spatial data; the spatial data was obtained from remote-sensing satellite imag-
ery, while the non-spatial data was derived from annual population density infor-
mation. The research process was outlined as follows:

Data Pre-Processing. Effective data pre-processing was a critical step for ensur-
ing accurate classification and analysis LULC, NTL, LSTs, and annual precipitation. 
This process involved the filtering of data sets by acquisition dates, the selection of 
appropriate spectral bands, and the application of techniques such as cloud masking 
to eliminate data noise. These steps were essential for improving the data quality 
and ensuring the reliability and validity of the subsequent analytical results.

Classification. This study conducted classification across four key variables: 
LULC, NTL intensity, LST, and annual rainfall. The LULC classification followed the 
SNI 7645-2010 standard [18], encompassing nine distinct categories: built-up areas, 
open lands, fields, mixed plantations, plantations, shrubs, dryland forests, mangroves, 
and water bodies. A similar classification scheme was used as defined by [19], cover-
ing fields, mixed plantations, plantations, dryland forests, mangrove forests, shrubs, 
settlements, open lands, and water. Multi-spectral satellite imagery supported the 
classification, with each class identified based on unique spectral characteristics [20].
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The random forest algorithm, a supervised machine-learning method, was used 
for classification. Training samples were obtained from high-resolution satellite im-
agery and validated through visual inspection to ensure classification accuracy.

NTL data from the VIIRS satellite was used to assess light intensity in urban 
and residential areas during the night-time. The NTL classification process divided 
radiance (brightness) values into classes based on specific threshold values, thus 
reflecting the level of economic activity and urbanization in a given region  [21].

The LST data was derived from the thermal bands of Landsat-8, which capture 
the radiant temperature of the Earth’s surface. This classification identified tempera-
ture variations across different land-cover types such as forests, plantations, and ur-
ban zones. The annual precipitation data was sourced from satellite-based measure-
ments and meteorological station records. Rainfall classification aimed to analyze 
the spatial distribution and intensity of precipitation and examine its interaction 
with LULC types and surface temperature variations.

Data Integration and Analysis. This process represents an advanced stage of 
data integration for spatial analysis. The key parameters that were utilized in this 
study included  NTL, annual population density, LULC, and environmental vari-
ables such as LST and annual precipitation.

To analyze the relationship between population growth and the expansions of 
urbanized areas, a simple linear regression analysis was conducted by comparing 
the spatial distribution of illuminated areas  (NTL) with annual population data. 
The NTL  data was obtained from VIIRS-DNB  satellite imagery, with illuminated 
areas being identified by using a specific radiance threshold to classify bright and 
dark zones. The extent of the illuminated areas (calculated in hectares) was used 
as a proxy for built-up-area expansion. The simple linear regression approach was 
applied to quantify the relationship between annual population figures and the ex-
tent of illuminated areas, allowing for a statistical interpretation of urban-growth 
patterns in relation to population dynamics.

As part of the data-integration process, this study also applied simple linear re-
gression analysis to evaluate the statistical relationships between LULC classes and 
two key climate variables: LSTs and annual precipitation.

LULC  classification was derived from Sentinel-2 imagery and categorized 
into several land cover types, including settlements (1), open lands (2), shrubs (3), 
fields (4), mixed plantations (5), plantations (6), dryland forests (7), mangrove for-
ests (8), and water (9). The LST values were extracted from the Landsat 8/9 imagery, 
while the annual precipitation data was obtained from the CHIRPS data set.

Simple linear regression analyses were conducted to accomplish the following:
	– assess linear relationship between LULC classes and LSTs;
	– assess linear relationship between LULC classes and annual precipitation;
	– quantify strengths of these relationships using R² values and evaluate influ-

ence of each LULC class on environmental variables through regression co-
efficients.
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3.	 Results and Discussion

The integration of remote-sensing (RS) and geographic information system (GIS) 
data over time is essential for monitoring urban growth and land changes. It is also 
important to consider the broader context of these changes – especially in those cas-
es where land transformation is linked to climate parameters  [22, 23]. Technolog-
ical advancements enable a comprehensive analysis of the temporal evolutions of 
urban areas and their environmental impacts. These technologies also facilitate as-
sessments of how climate-induced changes affect urban development and land cov-
er [24]. Furthermore, the spatial resolution of remote sensing is crucial for the rapid 
and accurate identification of urban expansion, which may encroach upon ecologi-
cally sensitive areas or worsen vulnerabilities that are related to climate phenomena.

3.1.	 Night-Time Light and Population Growth
This section used the 2019–2023 period, as population growth data from the 

BPS was only available up  to  2023. Based on the analysis, population increases 
were observed in 2019, 2021, and 2023. This growth was accompanied by urban de-
velopment, as was indicated by night-time activity that was monitored using the 
VIIRS  satellite imagery. These night-time activities reflected the spatial distribu-
tion of built-up areas as were captured during nights in 2019, 2021, and 2023. This 
growth was accompanied by urban development, as was evidenced by the capture 
of night-time activities through the use of the VIIRS satellite imagery.

The activity was based on the distribution patterns of buildings that were re-
corded during nights in 2019, 2021, and 2023. A two-year interval was selected under 
the assumption that the area had experienced changes in its spatial pattern over 
time. Additionally, the choices of these years were due to the availability of the pop-
ulation growth data, which was only accessible from 2019 through 2023.

The relationship between the extent of NTL and population size was analyzed 
using simple linear regression, with the NTL area as the independent variable (X), 
and the population (in thousands) as the dependent variable  (Y). The R²  value 
of 0.8692 indicated that approximately 87% of the variation in population could be 
explained by changes in the illuminated area (NTL). This suggested that NTL could 
be effectively used as a spatial indicator for the mapping and modeling of population 
density or distribution dynamics in those regions that experienced urban growth.

Figure 3 illustrates the correlation between the expansions of night-lit areas and 
population growth over two-year intervals. The analysis of the NTL data from 2019 
to 2023 revealed a consistent spatial expansion of illuminated areas, which reflected 
increased human activity and infrastructure development [13, 25]. The lit area grew 
from 3,410.16 ha in 2019 to 7,119.01 ha in 2023; during the same period, Berau’s pop-
ulation increased from 232,287 to 280,998  residents. This positive trend indicated 
a strong correlation between population growth and night-time illumination, thus 
supporting the use of NTL as a proxy for urban development [26].
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Fig. 3. Latest edition including expanded night light coverage  
encompassing years 2019, 2021, and 2023 (a);  

comparison between expansion of night-time light coverage and population growth 
during years 2019 (represented by first dot), 2021 (second dot), and 2023 (third dot) (b)

Source: Data Processing, 2024
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This aligned with recent studies that showed that night-time lights had a mod-
erate to strong correlation with population size or density at the regional level [20]. 
A meta-analysis that was conducted by  [27,  28] confirmed the  growing trend of 
NTL-based urban studies and their effectiveness in capturing urban dynamics.

3.2.	 Land-Use/Land-Cover Change over Berau Regency
Figure 4 presents the spatial distribution of the LULC changes in the study area 

for the years of 2019, 2021, and 2023.

Fig. 4. Area changes in each LULC class expressed in hectars (a);  
LULC maps for 2019, 2020, and 2023 (ordered from top to bottom) using nine classes (b)

Source: Data Processing, 2024
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The analysis revealed significant dynamics in several land-use categories. The 
settlement class showed a consistent increase in area throughout the period, thus 
indicating a trend of urbanization and the expansions of built-up areas  [29]. This 
was accompanied by increases in the open-land category, which suggested new 
land-clearing activities that were likely associated with infrastructure development 
or other land-conversion processes [30].

The dryland forest class remained relatively stable, with a slight increase ob-
served in 2023; this was possibly linked to conservation policies or natural reforesta-
tion processes. Meanwhile, the mangrove forest and water body categories did not 
exhibit significant changes, thus indicating that these ecosystems remained relative-
ly stable during the observation period.

Conversely, there was a noticeable decline in the plantation, mixed plantation, 
and shrub classes. This decline could be interpreted as a result of land-use conver-
sion toward more-intensive uses such as settlement and development activities. The 
field class also showed a slight decrease, potentially reflecting a shift in agricultural 
land-use orientation. Urbanization and infrastructure development (particularly in 
the city’s central, northern, and southern regions) have driven the expansions of 
built-up areas. In contrast, the southern and eastern regions experienced deforesta-
tion and the conversions of forest lands into open lands.

3.3.	 LULC Dynamics for Study Periods of 2019, 2020, and 2023

Information on the extent and percentage of LULC changes that were generated 
from the Sentinel-2  imagery is presented in Table 2. This table outlines the vari-
ous LULC classes that have experienced changes from 2019 through 2023. Spatio-
temporal and spatial analyses indicated a growing trend in LULC – particularly 
within the settlement and open-land classes.

The results of the calculations revealed that the settlement class experienced 
the highest change trend during the 2021–2023  period, encompassing an area 
of 9,192.33 ha (which represented a 21.39% increase). Furthermore, the most signifi-
cant change in the settlement class also occurred between 2019 and 2023, with a total 
area of 11,768.61 ha and a percentage change of 27.39%.

Another LULC category that witnessed an increase in area was open land, which 
showed the highest change during the biennial period from 2021 to 2023 (with an 
area of 5,878.19 ha – translating to a 7.05%  increase). Conversely, dryland forests 
and shrubs exhibited declining trends in area. The decrease in the dryland forest 
area was recorded at 1,139.49 ha, reflecting a 0.7%  reduction; meanwhile, shrubs 
experienced a substantial decline over the two years from 2019 to 2021, with a per-
centage decrease of 31.55% (equivalent to approximately 8,742.07 ha). In conclusion, 
the identified LULC changes highlighted a pattern of rapid urbanization that was 
characterized by the expansions of settlements and open land, while the areas of 
forests and shrubs diminished.
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Table 2. Area and annual percentage of LULC changes

LULC Class

Change

Area [ha] Annual Percentage [%]

2019–2021 2021–2023 2019–2023 2019–2021 2021–2023 2019–2023

Field 684.10 −1,834.87 −1,150.78 3.36 −9.92 −6.22

Mixed Plantation 9,227.84 −583.38 8,644.45 8.34 −0.53 7.86

Plantation −14,309.15 259.83 −14,049.33 −22.36 0.40 −21.87

Dryland Forest −1,282.90 −1,139.49 −2,422.40 −0.70 −0.62 −1.33

Mangrove Forest 6,571.32 −4,872.87 1,698.46 30.54 −29.27 10.20

Shrubs −8,742.07 −2,180.73 −10,922.79 −31.55 −8.54 −42.79

Settlement 2,576.27 9,192.33 11,768.61 7.63 21.39 27.39

Open Land 111.55 5,878.19 5,989.74 0.14 7.05 7.19

Water 1,563.03 −596.10 966.94 10.35 −4.11 6.66

Source: Data Processing, 2024

3.4.	 Area Change and Annual Percentage of Change

A comparative analysis was conducted on key parameters, including  NTL, 
LULC, and environmental factors such as rainfall and surface temperatures across 
the years of  2019, 2021, and  2023. Within the LULC  classification, residential ar-
eas represent the built-up zones, while open lands indicate those areas that have 
been converted from vegetated to non-vegetated cover. Vegetation includes various 
types, such as dryland forests, shrubs, plantations, mixed plantations, and man-
grove forests.

The considered environmental parameters included climatic variables such as 
precipitation and surface temperature. As shown in Table 3, the period from 2019 
to 2023 witnessed a significant increase in the area that was exposed to night-
time illumination. The findings revealed a substantial increase in those areas that 
were exposed to night-time illumination – from 3,410.16 ha in 2019 to 7,119.01 ha 
in 2023. This growth reflected the expansion of urban development, infrastructure, 
and night-time economic activities. Similarly, residential areas expanded signifi-
cantly – from 31,203.29 ha in 2019 to 42,971.89 ha in 2023. This change likely re-
sulted from accelerated urbanization, population migration, and land conversion, 
which were driven by economic development and demographic shifts from rural 
to urban areas.
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Table 3. Temporal changes in land-use and environmental parameters (2019–2023)

Year Nightlights 
[ha]

Settlement 
[ha]

Open Land 
[ha]

Vegetation 
[ha]

Rainfall 
[mm]

Temperature 
[°C]

2019 3,410.16 31,203.29 77,370.33 435,725.54 6,710.5 28.5

2021 6,173.13 33,779.56 77,481.88 427,874.68 6,931.5 29.5

2023 7,119.01 42,971.89 83,360.07 417,523.16 7,512.0 30.5

Source: Data Processing, 2024

Open land also increased from 77,370.33 ha in 2019 to 83,360.07 ha in 2023, thus 
indicating a potential rise in deforestation, land clearing for construction, or re-
duced agricultural activity. In contrast, vegetation cover declined from 435,725.54 ha 
to 417,523.16 ha over the same period. This decrease suggested the conversions of 
natural landscapes into settlements or open lands, which could have led to negative 
environmental impacts such as reduced air quality, disruptions of the water cycle, 
and losses of biodiversity habitats [31].

Environmental variables also experienced changes. Rainfall rose from 6,710.5 mm 
in 2019 to 7,512.0 mm in 2023, which may reflect shifts in climate patterns or in-
creased seasonal variability associated with climate change. Similarly, the average 
temperature increased from 28.5°C to 30.5°C. This gradual rise suggested the in-
fluence of global warming and may have intensified the urban-heat-island effect, 
particularly as urbanization accelerated and vegetative cover diminished [32]. The 
rising temperatures could have adversely impacted human health, agricultural pro-
ductivity, and local climate regulations.

In summary, the region has undergone substantial transformations due to ur-
banization and potential climate change. The expansions of residential areas and 
increased nightlight exposure have reflected rapid development, while the reduc-
tions in vegetation and increases in open land have signaled a shift from natural 
to constructed or undeveloped landscapes. Environmental indicators have further 
reinforced this trend, with rising temperatures and rainfall variability suggesting 
broader climatic impacts. These changes highlight the need for integrated land-use 
planning and environmental management to mitigate adverse effects on ecosystems 
and human well-being.

3.5.	 Rainfall and Temperature Distribution over Berau Regency
The following image depicts the distributions of rainfall and temperatures in Be-

rau Regency. The most notable changes that could be observed during the analysis pe-
riod included reductions in precipitation levels and increases in temperatures. These 
alterations could be attributed to the phenomenon of urban sprawl [33]. The persistent 
decline in rainfall may have indicated a shift in climate patterns, which could have 
had potentially negative impacts on local ecosystems and agricultural productivity.
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Figure 5 shows the spatiotemporal variation of  LST and rainfall from 2019 
through 2023.

Fig. 5. Annual rainfall (a) and temperature (b) trends for 2019, 2021, and 2023
Source: Data Processing, 2024

a)

b)
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The built-up and open-land areas recorded the highest LST values (31–34°C), 
while the forested and mangrove zones maintained cooler profiles  (20–21°C). 
This supported the hypothesis that vegetation played a key role in surface cool-
ing through evapotranspiration. Meanwhile, rainfall remained at the highest levels 
(7,000–8,000 mm/year) in the densely vegetated zones, whereas urban and open ar-
eas received lower precipitation (5,000–6,000 mm/year).

3.6.	 Correlation of LULC with Rainfall and LST
A comparative analysis was conducted on the key parameters, including NTL, 

LULC, and environmental factors such as rainfall and LSTs for the years of 2019, 
2021, and  2023. In the LULC  classification, settlement areas represented built-up 
zones, while open land indicated those areas that had been converted from vege-
tated to non-vegetated surfaces. Vegetation in this context included various land 
cover types such as dryland forests, shrubs, plantations, mixed plantations, and 
mangrove forests.

The environmental parameters that were analyzed included rainfall and LSTs. 
As shown in Table 3, there was a significant increase in the extents of those areas 
that were exposed to night-time lighting from 2019 to 2023 (3,410.16–7,119.01 ha). 
This finding reflected the expansions of built-up areas, increased infrastructures, 
and intensified night-time economic activities. Similarly, settlement areas increased 
from 31,203.29 ha to 42,971.89 ha; this growth was most likely due to accelerated 
urbanization, population growth, and the conversions of natural vegetation into 
built-up zones.

The expansion of open land from 77,370.33 ha to 83,360.07 ha indicated ongo-
ing deforestation, land clearing for construction, or unsustainable agricultural land 
conversion. Conversely, the extents of vegetated areas decreased from 435,725.54 ha 
in 2019 to 417,523.16 ha in 2023. This shift from natural to built-up landscapes has 
had serious environmental impacts, including reduced air quality, disrupted hydro-
logical cycles, and losses of biodiversity habitats.

In terms of environmental variables, rainfall increased from 6,710.5 mm in 2019 
to 7,512 mm in 2023; this indicated a shift in climate patterns or increased seasonal 
variabilities that were linked to global climate change. Similarly, the average tem-
perature rose from 28.5°C to 30.5°C; this temperature increase aligned with the ex-
pansions of built-up areas and reductions in vegetation cover, reflecting the impacts 
of global warming (which exacerbated the urban-heat-island effect). This phenom-
enon could have negatively affected public health, agricultural productivity, and 
local climate regulations.

The relationships among LULC, LST, and rainfall were further analyzed to 
understand the interconnections among these variables, as illustrated in Figure 6. 
The figure presents the relationships between LULC classes and LST for 2019, 2021, 
and 2023 (Fig. 6a–c), as well as the relationships between LULC classes and rainfall 
for the same years (Fig. 6d–f).
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The LULC classes were numerically labeled from 1 to 9, with the following cat-
egories: settlements (1), open lands (2), shrubs (3), fields (4), mixed plantations (5), 
plantations (6), dryland forests (7), mangrove forests (8), and water bodies (9). The 
analysis showed a significant correlation between the LULC classes and LST. In the 
settlement and open-land classes, LST temperatures tended to be higher (31–34°C). 
This was consistent with the previous findings that showed that low-vegetation ar-
eas absorbed more heat and intensified the urban-heat-island effect [34, 35].

In contrast, those areas with vegetative covers such as dryland forests and man-
grove forests showed lower LST values (20–21°C). The vegetation acted as a natural 
cooling system through the process of evapotranspiration, which released latent heat 
and lowered surface temperatures. Additionally, a pattern was found between LULC 
and rainfall distribution. Non-vegetated areas such as settlements and open lands 
tended to receive lower rainfall levels (ca. 5,000–6,000 mm/year), whereas forested and 
highly vegetated areas received higher levels of rainfall (ca. 7,000–8,000 mm/year). 
This indicated the critical role of vegetation in maintaining humidity, strengthening 
the hydrological cycle, and enhancing cloud formation [36, 37].

Ecologically, vegetation contributes significantly to temperature and rainfall 
patterns through physical-biological interactions with the atmosphere. The evapo-
transpiration process not only reduces surface temperatures but also increases cloud 
formations and local rainfall. Vegetation also influences energy distribution by bal-
ancing latent and sensible heat fluxes, thus supporting micro- to regional-scale cool-
ing [38]. On a larger scale, dense vegetation such as tropical forests plays a vital role 
in dampening heatwaves and increasing moisture retention. Recent studies have 
revealed that the presence of vegetation also mitigates the severity of climate-related 
disasters such as droughts and enhances ecosystem resilience to climate change [39].

4.	 Conclusion
This study demonstrates the strong interplay among urban expansion, vegeta-

tion loss, and environmental changes in Berau Regency between 2019 and 2023. Us-
ing integrated remote-sensing data including night-time lights (NTL), land use/land 
cover (LULC), land surface temperatures (LSTs), and precipitation, our findings con-
firmed that built-up area expansion correlated with increased NTL intensity, rising 
temperatures, and reduced vegetated cover. Our key findings included the following:

1.	 The significant increase in built-up areas (11,768.6 ha) and NTL-lit regions 
(3,410.16–7,119.01 ha) indicated rapid urban growth.

2.	 The decline in vegetated land (−18,202.38 ha) mainly occurred in plantation 
and shrub areas, thus contributing to higher surface temperatures.

3.	 Surface temperatures rose by 2°C in built-up areas over the four years, thus 
confirming the urban-heat-island effect.

4.	 Vegetated areas consistently maintained lower temperatures (20–21°C) and 
received higher levels of precipitation (7,000–8,000 mm/year), thus under-
scoring their role in local climate regulation.
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This study affirmed that the integration of NTL, LULC, and climatic variables 
constitutes an effective and scalable approach for monitoring urban growth and 
assessing its environmental implications – particularly in the secondary cities of 
Indonesia. The findings demonstrated that such an integration enables a compre-
hensive spatial understanding of the complex interactions among urban expansion, 
vegetation loss, and climate variability. Nonetheless, certain limitations must be ac-
knowledged. The spatial resolution of the NTL data that was used (500 m) may have 
obscured finer spatial variations – especially in those areas with dense or small-scale 
settlements. Moreover, the reliance on annual temporal snapshots restricted the abil-
ity to capture intra-annual or seasonal climate dynamics, thus limiting a more nu-
anced interpretation of the temporal variability and short-term anomalies.

To overcome these constraints, future research is encouraged to utilize higher-
resolution spatial data sets such as PlanetScope or VIIRS-DNB and adopt multi-
temporal analyses that incorporate monthly or seasonal observations. Additionally, 
the application of advanced modeling techniques, including spatiotemporal regres-
sion or land-use-change-forecasting models, could further elucidate causal relation-
ships and provide robust projections of urban-environmental dynamics over time.

From a policy perspective, the results underscored the urgent need to integrate 
urban-development planning with environmental-management frameworks. Key ac-
tions include regulating uncontrolled land conversion, conserving existing vegetative 
covers, and promoting green infrastructures to mitigate the adverse effects of rising 
surface temperatures and hydrological imbalances. In the broader national context, 
the methodological framework that was adopted in this research holds significant 
potential for replication in other rapidly urbanizing regions of Indonesia. It provides 
a scientific data-driven foundation to support spatial planning, inform sustainable 
land-use policies, and guide climate-adaptation efforts, thereby aligning with na-
tional objectives for resilient and environmentally sustainable urban development.
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