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Manual versus Digital Classification of UAV Images  
in Oak Phenological Studies

Abstract:	 This research concerns the phenological phenomenon of the autumn discol-
orations of sessile oak leaves as the trees prepare for winter dormancy. Ses-
sile oak trees were categorized into five classes according to the general colors 
of  their crowns: from green to brown. Low-altitude UAV-acquired images 
from the visible B, G, and R bands were used, compared, and evaluated against 
the results of several classification methods: those that were carried out in the 
field, visually based on orthomosaic observations, and four variants of digital 
classification.

	 The analysis showed that those methods that were based on observer assess-
ments were highly subjective. At the same time, there was also the problem 
of the reference data to which the results of the individual methods could be 
referred. It was expected that the analyzed phenomenon of tree-crown discol-
oration would be better visible in aerial photographs than in field observations; 
However, visual color classifications using orthomosaics can be too subjective 
(as has been shown). It is recommended to use supervised digital classification 
with a careful selection of reference (training) objects.

	 To switch from pixel-classification results to individual tree classifications, a nov-
el approach was adopted in which the class value that was most abundant within 
the images of each canopy (determined by the supervised classification method 
selected) could be used. Among the supervised digital-classification  meth-
ods that were applied, the results that were closest to the  classification  per-
formed in the field were obtained by using the ML and Fisher algorithms (fol-
lowed by kNN).
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1.	 Introduction

Each year, the cyclical phenomena in the natural environment that result from 
the variability of the seasons can be observed: plants develop and go through suc-
cessive phases of development in a specific order, with some undergoing the process 
later (benefitting from the delays in the developments of other plants). Within sev-
eral species of trees, differences in the developments of individual trees can also be 
observed; however, the causes of these phenomena are not fully understood [1–6]. 
The potential impact of habitat microdiversity – fertility and access to water, reac-
tions to the presence of pathogens (mainly insects) – is indicated [7–13]. Research on 
the course of phenological phenomena has become very important due to the clear 
impact that global climate change has on individual tree species [14–16].

Among the economically important species of deciduous trees, such differenc-
es in the phenological developments of spring and autumn specimens are clearly 
visible in the beech Fagus sylvatica  L., oaks (of which, there are three native spe-
cies in Poland; namely, the pedunculate oak [Quercus robur L.], sessile oak [Quercus 
petraea  (Matt.) Liebl.], and downy oak [Quercus pubescens Willd.] (which occurs at 
only one very small locality), and European ash trees (Fraxinus excelsior L.).

The phenomena that occur in the spring are more often the subjects of scientific 
phenological studies; for this reason, they are better understood than those that oc-
cur in the autumn. Studies on the course of phenological phenomena may cover vast 
areas; for this purpose, aerial-remote-sensing and satellite-remote-sensing methods 
are very often used [17, 18, 20–23, 26, 27]. In the case of small areas or small groups 
of trees, images that are obtained using unmanned aerial vehicles are useful [20–22].

The phenological phenomena that occur in the autumn are related to the prepa-
rations of trees for winter dormancy; this is expressed externally in changes in their 
leaves’ colors and, later, in the amounts of assimilation apparatus. Without going into 
the details of the biochemical transformations that take place in the leaves [23–31], 
it can certainly be noticed that the leaves change their colors from green through 
various shades of yellow (sometimes, also red) to brown. In some species (e.g., the 
larch [Larix sp.]), the needles fall off after reaching a yellow color, while red can often 
be seen in maples (Acer sp.). According to many years of observations, two species 
of oaks undergo color transformations in the following cycle: green (G), yellow (Y), 
and brown (B); the red color (which can be attributed to an entire tree) is basically 
not observed in the oaks. In addition to the indicated colors, it is also possible to 
distinguish intermediate colors; e.g., green/yellow (G/Y) and yellow/brown (Y/B).

From the remote-sensing level, the diversity of the colors of the assimilation 
apparatus of trees is easily observable. Images that are recorded in the visible 
bands (B, G, R) or within the infrared (IR) range may be used for crown-color anal-
ysis. Image processing may be carried out using many different techniques; among 
these, spectral indices and digital classification (in its various variants – supervised, 
unsupervised, multispectral, or object-oriented) seem to be the most useful.
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This paper compares the classifications of images that were obtained with the 
use of a camera that was carried by a UAV for the purpose of studying the course 
of the phenomenon of the autumn discoloration of the assimilation apparatus in 
sessile oak. The consistency of the results of four variants of numerical classifica-
tion was checked, along with the results of visual classifications and classifications 
that were performed in the field. The advantages and disadvantages of numerical, 
manual, and visual solutions were discussed. Finally, a numerical way of switch-
ing from pixel classification to the classifications of whole tree crowns was also 
proposed.

2.	 Materials and Methods

2.1.	 Study Area

The research concerned a sessile oak stand (Quercus petraea [Matt.] Liebl.) that 
was located in central Poland (51.763267 N, 20.115792 E); this featured trees that were 
about 85 years old that had an average breast-height-diameter (BHD) of 27 cm and 
an average height of 24 m. In the main stand, there was a small number of Scots pines 
(Pinus sylvestris L.) with no second story nor undergrowth; in the understory layer, 
there were occasionally common hazels (Corylus avellana L.). The undergrowth layer 
was relatively poor in terms of the species composition; in some places, the vegeta-
tion cover was discontinuous.

2.2.	 Low-Altitude UAV Images

Aerial images were recorded on October 27 using an AVI-1 drone – an electri-
cally powered airframe that carried two Sigma DP2 cameras; one of the cameras 
recorded images in the visible range  (RGB), while the other was modified to re-
cord the infrared (IR) channel [32]. In this study, only RGB images were used; these 
were transformed with EnsoMOSAIC software into an orthomosaic with a spatial 
resolution (understood as the ground-sampling distance – GSD) of 0.15 m.

2.3.	 Field Phenological Observations

In the studied stand, permanent experimental plots were located; these consist-
ed of the appropriate markings and precise geodetic measurements of the locations 
of all of the trees that formed the main stand as well as their basic dendrological 
characteristics: BHD, heights, and crown diameters. At the same time, one observ-
er classified each of the 417 oak trees into one of five classes based on their domi-
nant leaf colors: green (G), green/yellow (G/Y), yellow (Y), yellow/brown (Y/B), and 
brown  (B). The distinguished color classes indicated the degrees of the advance-
ments of the process of the trees’ transitions to winter dormancy [20–22].
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2.4.	 Aerial Photo Processing
In the RGB orthomosaic, the crown contours of all of the trees that were located 

on the trial plots were identified and manually digitized (Fig. 1a). The next step was 
to classify the oak crowns into the five color classes as before. The classifications 
were performed visually based on subjective assessments that were performed by 
the observer and then repeated in four variants of digital supervised classification. 
In the digital variant, a total of 25 carefully selected trees (i.e., five for each color 
class) were adopted as models (Fig. 1b).

Fig. 1. Sample plots with marked tree crown ranges (a);  
tree crowns selected as references in supervised classification (b)

a)	 b)

Digital classification was performed using the minimum distance (MD), max-
imum likelihood  (ML), Fisher, and k-nearest neighbors  (kNN) algorithms. Terr-
Set® software was also used [33]. The illustrative materials that are included in the 
following sections of this article are limited to one research area in order to avoid un-
necessary increases in the length of the paper. The numerical data that is contained 
in the attached tables accurately present the obtained results.
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3.	 Results

3.1.	 Results of Field Phenological Observations

An observer in the field classified the trees by assigning each tree into one cate-
gory of leaf color (Fig. 2a, Table 1).

Fig. 2. One research area: oak crowns visible in orthomosaic that was made in October 2011 (a); 
results of classification performed in field (b); results of visual classification performed on 
orthomosaic (c); dominant color of crowns marked by attached color scale; unclassified 
trees (marked as white polygons) were Scots pines (orthomosaic section covered area of 

approx. 60 m × 60 m)

a)	 b)

c)
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The vast majority of the trees had assimilation apparatus that were colored uni-
formly; i.e., one color throughout the entire crown. In the events of differences in 
the colorings between the upper and lower parts of the tree crown, the color of the 
upper part determined the final pass, as this part of  the tree crown was also vis-
ible in the aerial photographs; thus, good compliance  of the terrain classification 
was ensured with the classifications that were taken in the aerial photographs. No 
other differences in color could be observed among the studied trees – if the colors 
changed, this was only in the vertical gradient.

3.2.	 Results of Manual (Visual) Classification  
Performed with Use of RGB Orthomosaic

During the classifications that were performed visually on the aerial photo-
graphs (Fig. 2c, Table 1), the observer first marked the crowns of the trees; these were 
classified as green (G) and brown (B), then yellow (Y), and finally as the intermediate 
colors (G/Y and Y/B). Although the field and photo observations were made by other 
observers (compare the three parts of Figure 2), one can notice a certain agreement 
between the two classifications. Detailed data for the entire research material is in-
cluded in Tables 2 and 3.

3.3.	 Results of Digital Supervised Classification of RGB Orthomosaic

In the supervised classification, the first assessment was carried out for the sig-
natures of the oaks that were selected as the model for the five color classes. For this 
purpose, tools that are commonly used in remote sensing were used; i.e., a signature 
comparison chart (Fig. 3), scattergrams (Fig. 4), and separability measures (Table 1).

Y
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175
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Fig. 3. Signature comparison chart for 25 oaks that were selected as training objects for 
five color classes of assimilation apparatus: on horizontal axis, orthomosaic spectral bands 

are marked (B, G, R); on vertical axis, average values of image brightness in crowns of model 
trees are placed
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A comparison of the average brightness values of the images  (Fig. 3) shows 
that the greatest differences among the oaks that belonged to the individual classes 
occurred in the red channel  (R), followed by the green channel  (G). The highest 
brightness values were recorded in those oaks that belonged to the group of trees 
with yellow crowns (Y), while the lowest values were in those oaks that belonged 
to the group with brown crowns. In general, the brightness of the images increased 
from the oaks with green crowns (G) to yellow/green (G/Y), then to yellow (Y); this 
decreased in the Y/B and B trees.

According to the scattergrams (Fig. 4), the ellipses of the scatter of the pixel val-
ues that belonged to the trees from the different classes of crown colors overlapped 
to some extent. In the figure, the ellipses for the G/Y and Y/B classes (which occupied 
intermediate positions) are not marked (for better visibility).

a)	 b)

c)

Fig. 4. Scattergrams showing spreads of pixel values of orthomosaic spectral bands: 
ellipses indicate spread ranges of pixel values for each color class of tree canopy selected 

as reference for digital classification; for better visibility, only ellipses for G, Y, and B 
oak classes are shown (logarithmic scale used in legend)
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Table 1. Measures of signature separability

Bhattacharyya Distance

Signature G/Y Y Y/B B

G 136,961.47 1,205,049.32 821,316.75 249,689.30

G/Y – 586,326.81 323,794.03 416,241.78

Y – – 72,555.12 1,598,317.51

Y/B – – – 1,034,097.96

Divergence

Signature G/Y Y Y/B B

G 1.16 8.00 11.45 19.18

G/Y – 3.55 6.27 17.32

Y – – 0.54 11.07

Y/B – – – 6.65

Transformed Divergence

Signature G/Y Y Y/B B

G 270.76 1263.98 1521.82 1818.04

G/Y – 716.40 1086.45 1770.40

Y – – 130.39 1499.01

Y/B – – – 1129.42

The overlapping of the ellipses (Fig. 4) and the low separability values of some 
classes of the oak crown colors that are shown in Table 1 indicated that the results of 
the digital classification may have been subject to errors despite the careful selection 
of the reference trees. All  of the separability measures indicated that the separa-
tion of the yellow oaks (Y) from the yellow-brown oaks (Y/B) and the green oaks (G) 
from the green-yellow oaks (G/Y) may have proven to be the most difficult.

The classifications that were made using the MD, ML, Fisher, and kNN algo-
rithms were so-called pixel classifications; i.e., the classified objects were pixels in 
three orthomosaic channels based on their brightness and not entire tree crowns (as 
was the case in the field and visual classifications that were made by the observers). 
These were, therefore, two fundamentally different approaches to the task of classi-
fication. Within the crown of a single tree, there were several dozen or even several 
hundred pixels; as a result of the pixel classification, they could have been catego-
rized into different classes. This was indeed the case (Fig. 5). To overcome this prob-
lem, a procedure was proposed to classify the entire collection of tree crowns into 
one of the five classes of colors by adopting the class that was the most numerous 
within a given crown (Fig. 6).

In order to compare the obtained results, histograms were made of the tree 
distributions in the color classes of their crowns in all of the variants of classifi-
cation  (Fig. 7). Comparing the histograms, it can be seen that the most-similar 
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results were obtained in the ML and Fisher methods, followed by kNN. These three 
classifications gave results that were similar to those that were obtained during 
the classification that was performed in the field. The MD classification differed sig-
nificantly from all of the other results. The manual classification that was performed 
by the observer with the use of the orthomosaic differed from both the results of 
the classification that was performed in the field and those from the uses of the ML, 
Fisher, and kNN digital classifications.

a)	 b)

c)	 d)

Fig. 5. Pixel-classification results using digital classification: a) MD; b) ML; c) Fisher; d) kNN
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a)	 b)

c)	 d)

Fig. 6. Results of reclassification of trees by adopting entire crown of class  
that was most represented in digital classification: a) MD; b) ML; c) Fisher; d) kNN

Fig. 7. Shares [%] of oaks in individual classes of leaf colors  
according to applied classification procedures: field observations,  

visual classification on orthomosaic, and MD, ML, Fisher, and kNN digital classifications
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3.4.	 Contingency Analysis

In order to accurately compare the classifications, contingency tables have been 
introduced to this document; these make it possible to show how those oaks that 
belonged to the different classes of crown colors were categorized in the classifica-
tion methods that were used. Table 2 shows the results when field data was used as 
a reference, while Table 3 compares the classification results with the visual classifi-
cation that was performed on the orthomosaic. Then, two measures of accuracy that 
are commonly used in remote sensing were calculated: overall accuracy (OA), and 
kappa [34].

Overall accuracy determines the share of correctly classified trees; i.e., this is the 
sum of the numbers that lie on the diagonal of the matrix divided by the number of 
all of the analyzed trees. The kappa analysis was designed to assess to what extent 
the results of a classification are better than random assignment. Both measures may 
take on values within a range of 0 to 1; i.e., from a complete discrepancy between the 
results of the two classifications to their full agreement.

Table 2. Contingency matrix that compares visual  
and digital-image-classification results with field data

Classificationon orthomosaic
Field classification (reference)

G G/Y Y Y/B B Sum

Visual
OA = 35.25%

Kappa = 0.189539

G 10 11 5 3 3 32

G/Y 3 36 77 47 10 173

Y 0 2 16 9 6 33

Y/B 1 6 21 48 49 125

B 0 0 1 16 37 54

Sum 14 55 120 123 105 417

Minimum distance
OA = 37.89%

Kappa = 0.157471

G 7 5 0 0 0 12

G/Y 0 0 0 1 1 2

Y 5 30 80 59 34 208

Y/B 0 0 0 0 0 0

B 2 20 39 63 71 195

Sum 14 55 119 123 106 417

Maximum likelihood
OA = 45.80%

Kappa = 0.292616

G 7 8 2 2 2 21

G/Y 6 29 34 20 2 91

Y 0 10 56 32 13 111

Y/B 1 6 21 38 27 93

B 0 2 7 31 61 101

Sum 14 55 120 123 105 417
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Classificationon orthomosaic
Field classification (reference)

G G/Y Y Y/B B Sum

Fisher
OA = 46.76%

Kappa = 0.307941

G 9 12 2 3 2 28

G/Y 4 26 34 19 3 86

Y 0 9 54 28 11 102

Y/B 1 6 22 40 23 92

B 0 2 8 33 66 109

Sum 14 55 120 123 105 417

kNN
OA = 40.53%

Kappa = 0.244482

G 9 13 2 5 2 31

G/Y 4 30 56 31 9 130

Y 0 8 36 25 13 82

Y/B 1 3 18 32 19 73

B 0 1 8 30 62 101

Sum 14 55 120 123 105 417

Table 3. Contingency matrix that compares digital-image-classification results  
with visual classification on orthomosaic

Digital classification on orthomosaic
Visual classification on orthomosaic (reference)

G G/Y Y Y/B B Sum

Minimum distance
OA = 23.98%

Kappa = 0.145906

G 12 0 0 0 0 12

G/Y 0 2 0 0 0 2

Y 6 116 33 52 1 208

Y/B 14 0 0 0 0 14

B 0 55 0 73 53 181

Sum 32 173 33 125 54 417

Maximum likelihood
OA = 57.55%

Kappa = 0.460192

G 18 3 0 0 0 21

G/Y 14 75 1 0 1 91

Y 0 76 25 10 0 111

Y/B 0 17 7 69 0 93

B 0 2 0 46 53 101

Sum 32 173 33 125 54 417

Table 2. cont.
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Fisher
OA = 58.75%

Kappa = 0.477851

G 23 5 0 0 0 28

G/Y 9 76 0 0 1 86

Y 0 66 28 8 0 102

Y/B 0 22 5 65 0 92

B 0 4 0 52 53 109

Sum 32 173 33 125 54 417

kNN
OA = 62.11%

Kappa = 0.505071

G 23 6 0 1 1 31

G/Y 9 111 1 9 0 130

Y 0 37 24 21 0 82

Y/B 0 17 8 48 0 73

B 0 2 0 46 53 101

Sum 32 173 33 125 54 417

4.	 Discussion of Results and Conclusions

All of the results of the digital classification that was performed on the orthomo-
saic showed a relatively low agreement with the field and visual classifications. On 
the basis of Figure 7, it can be assumed that the digital classification was more con-
sistent with the field classification; however, this was not confirmed by the contin-
gency matrices (Tables 2, 3). The values of both the overall accuracy and the kappa 
index were very low and quite distant from the satisfactory level of approx. 85–90% 
that is assumed in remote sensing. The occurrences of the differences in the results 
of the performed tree classifications was inevitable: first, the field and orthomosaic 
observations were made by two distinct observers; both of these variants carry a sig-
nificant load of subjectivism when assessing such a subtle phenomenon as color. 
It should be remembered that the observers saw the trees from different perspec-
tives – from the profile in the field, and orthogonally from above on the orthomosaic. 
The observer who worked on the photos had a better opportunity to compare the 
observed trees with the other specimens and had a lot of time to perform his activ-
ities; however, the observer who worked in the field had a brief contact with each 
tree, thus limiting the possibilities of comparisons with the other trees. Moreover, 
he saw the trees (especially, their top parts) against the background of a bright sky, 
which interfered with the correct performance of the classification. In both cases, 
the observers sometimes saw zones of different colors within the crowns, and it was 
necessary to classify each tree into only one class of foliage color. This may have 
been the reason why the digital classifications (except for MD) were better-matched 

Table 3. cont.
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by the visual classification on the orthomosaic (Table 3) than by the field classifica-
tion (Table 2). The visual classification on the orthomosaic showed little consistency 
with the field classification. In the manual classification on the orthomosaic, a rel-
atively high number of trees that were categorized as G/Y and Y/B were obtained 
as compared to those in the G, Y, and B classes (Fig. 7). In the other classification 
methods (except for MD), more-even distributions were obtained. This result may 
have been interpreted in such a way that the observer who performed the manual 
classification on the orthomosaic likely had his own relatively ‘sharp’ mental criteri-
on for distinguishing the yellow color (Y); as a result, those trees with crown colors 
that even slightly deviated from this ‘pattern’ were classified to the transitional (in-
termediate) G/Y and Y/B colors.

Digital classification may be considered to be objective (although, with some 
caveats). As supervised classification procedures, they require the indications of 
reference and training objects and, thus, the involvement of an observer. Both the 
selections of model trees and their numbers and crown sizes are important, as these 
affects the sample sizes (the numbers of trees, and the numbers of pixels). The re-
sults that are obtained by pixel classification are not unambiguous for individual 
trees; this is due to the variability of the colors within a canopy as well as the lighting 
conditions. In particular, the lighting conditions are responsible for the significant 
stretching of the ellipses that describe the dispersion of the brightness values of the 
pixels of any reference trees (Fig. 4). In our tests, this fact contributed to obtaining 
a completely different result of the MD classification when compared to the other 
methods.

When switching from pixel classification to whole-canopy classification, a crite-
rion was used that was based on the abundance of the most common pixel class in 
a given tree canopy; in other words, it was a modal or majority value that was cal-
culated for the pixels that were located within the contours of the individual trees. 
As has been shown, the results of the ML, Fisher, and kNN methods were similar 
when comparing these methods with each other, and they showed similarities to the 
classification that was performed in the field.

The problem of relating the obtained results to the data that could have been 
considered to be the reference level should be discussed separately. Placing the re-
sults of the classification that was performed in the field in this role may need to 
be questioned due to the previously demonstrated difficulties in observing the tree 
crowns. On the other hand, the classification that was made by the observer on the 
orthomosaic may have been burdened with considerable subjectivism when distin-
guishing the colors (which was also mentioned above). The experiences of observ-
ing many other similar materials showed that the color diversity of the trees was 
very well visible from the low-altitude remote-sensing ceiling. From this level, the 
classified trees may have been compared with almost all of the others, which may 
have helped to decide what was particularly important when choosing our refer-
ence trees.
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The process of the changing of the colors of tree crowns is a continuous process, 
not a step change. This continuity is clearly visible in the color space (Fig. 4), be-
cause the ellipses of the pixel distributions of the master trees occupy positions that 
form certain sequences. This is similar to the sequence of changes in colors and, more 
broadly, the brightness of pixels in different spectral channels that can be observed as 
cereals ripen, for example. Therefore, knowing the brightness values for the G, Y, and 
B colors of tree crowns, it is possible to predict the values that are typical for crowns 
with transitional colors; i.e., G/Y and Y/B. When attempting to analyze the phenom-
enon of autumnal changes in the colors of tree crowns, it is therefore recommended 
to utilize digital classification – provided that the reference objects are carefully se-
lected. It is also worth considering whether it is necessary to be very detailed in the 
classification (i.e., whether it is not worth limiting this to the main colors; e.g., G, Y, B); 
however, it is known that, in the cases of other tree species, there may be a clear phase 
of red coloration. Therefore, the decision on selecting the color sequence should be 
preceded each time by careful field observations of their changes over time.

In this study, spectral indices that are normally used in the study of phenolog-
ical phenomena were not utilized. Channels from visible and other ranges (such as 
infrared) could have been used to calculate them, but this aspect was not consid-
ered; in view of the development of low-altitude hyperspectral remote-sensing tech-
nology, however, this is worth taking into account in future research. Low-altitude 
RGB images that are taken with UAVs may be used to analyze the course of an anal-
ogous phenomenon in other tree species – especially, maples and beech.
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