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1.	 Introduction

When handling an investment, one of the surveyor’s basic tasks is to determine 
the coordinates with the greatest accuracy possible. According to the Regulation of 
the Minister of the Interior and Administration of November 9, 2011, on the tech-
nical standards for the performance of geodetic topographic and field surveys as 
well as the preparation and transfer of these surveys to the National Cartographic 
Documentation Center database, “during the performance of topographic and field 
surveys related to the handling of construction investments, a  setting-out control 
may be used, adjusted for the geometrical structure and accuracy of the positions of 
its points to the type of investment and requirements specified in the construction 
documentation.”

In engineering practice, the Gauss–Markov model is most commonly used 
to adjust observation results, taking into account a  diagonal covariance matrix 
for  the observed values. It is also possible to use the Gauss–Markov model to 
adjust the results of the surveys of double controls, taking into account the appar-
ent observational equations (pseudo-observations) for the coordinates of the refer-
ence points. Wiśniewski [1] demonstrated that the same results were obtained both 
in the single-stage adjustment and multistage adjustment processes, which took 
into account the equations of the pseudo-observations. Baarda [2], Teunissen [3], 
Rao [4], and Cross [5] were preoccupied with the problem of the proper selection of 
weights. Kampmann [6] and Caspary [7] developed the estimation process based 
on the balanced accuracy of the observations. Kampmann [8] and Hekimoglu [9] 
presented original studies on the selection of weights. Different accuracies in the 
existing geodetic controls and measuring factors affecting the accuracy of deter-
mining the coordinates of the setting-out control points make the adjusted coordi-
nates of the geodetic points random; i.e., covariance matrices should be formulated 
a priori for them.

In this paper, the principles of the estimation of Gauss–Markov model param-
eters and their variances were applied to a network of geodetic points at which the 
estimated parameters (the coordinates of the points) were random [10] and were 
verified on a particular example of a  leveling network of points to determine the 
vertical displacements of a landslide surface.

2.	 Theoretical Bases for Gauss–Markov model (L, AX, H) 
with random parameters

Each observed value of λ may be defined by an observational equation in the 
general form:

				    δλ + d(λ) = λobserv – λapprox	 (1)
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Variables in Formula (1):
	 	λobserv 	– 	the random deviation of observed value,
		  d(λ)	 –	the differential of a  function describing the variability of analyzed 

component λ with respect to the coordinates of the points of the geo-
detic network defining that component,

	 λapprox 	– 	the approximate value of the analyzed component, determined sub-
ject to the approximate coordinates of the points of the geodetic net-
work.

If L is a vector of random variables equal to (λobserv – λapprox) and the average val-
ue of vector L can be written as E(L) = AX (where X is the vector of unknown param-
eters), then matrix A represents the matrix of the coefficients defined by the values 
of partial derivatives occurring in differentials d(λ). Vector of unknown parameters 
X also represents a random variable for which it is possible to determine a priori 
covariance matrix CX.

Assuming that matrix H = P–1, the conditional covariance matrix of observation 
vector L can be determined by the following dependence:

	 V(L) = E[V(L/X)] + V[E(L/X)] = H + V(AX) = H + ACXAT� (2)

Taking into account the conditional covariance matrix of observation vector L, 
the square form of F for random deviations takes the following form:

	 F = [(L – AX)T(H + ACXAT)–1(L – AX)] = min� (3)

After the transformations (with the assumption for the minimum of For-
mula  (3)), an alternative formula for calculating the estimator of vector X̂ was 
obtained:

	   X̂ = (CX
–1 + ATH–1A)–1ATH–1L � (4)

After a  full analysis of the variance, a  functional relationship was obtained 
that represents the estimated variance σ2(X̂i) of the analyzed parameter (X̂i) and 
the tested variance σ2(Xi) of this parameter, taking into account k = n − u degrees 
of freedom determined by the chi-square (χ2) method according to the following 
formula:
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Finally, a  relationship between the estimated variance and tested variance in 
conjunction with distribution quantile (χ2) was obtained; i.e.:

	   

2
2
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ˆσ ( ) χ (α ;  ) 1 α
σ ( )

 
    
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X 	
	�  (6)

where the condition for the tested variance for the confidence level of (1 – α) can be 
written using the following formula:

2
2

2 2

ˆσ ( ) ˆσ ( ) σ( ) σ( )
χ (α ;  ) χ (α ;  )i i

k X kX X X
k k


   � (7)

The above formula can be used to set the limit values for the standard devia-
tions of the estimated parameters.

3.	 Numerical Example of Applying Gauss–Markov Model  
with Random Parameters

The numerical example concerns a  fragment of a  leveling network of points, 
which consists of four benchmarks representing the surface of a landslide (as illus-
trated in Figure 1).
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Fig. 1. Fragment of leveling network of points

Based on the observations of the first periodic measurement, the most probable 
heights of these benchmarks and their covariance matrix were obtained. As demon-
strated in Figure 1, the values of these parameters are as follows:
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     

           
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During the second periodic measurement, five height differences hi were 
observed, each of which was observed from Stand 1 of the leveler. The results 
of these observations along with the calculated height differences and the free 
terms for the observational equations are presented in the form of one-column 
matrices:
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The observational equations (written in matrix form δ + AX̂II = LII) take the fol-
lowing explicit form:

1
1

2
2

3
3

4
4

5

δ 1 1 0 0 2.2
δ 0 1 1 0 4.8

[mm].δ 0 0 1 1 3.9
δ 1 0 0 1 1.4
δ 1 0 1 0 0.4

dz
dz
dz
dz

     
             
               

       
            

It is evident that R(A) = 3, as each column of matrix A is a linear combination 
of the remaining three columns, then matrix A (representing the system of equa-
tions with four unknowns) has a defect of d = m – R(A) = 4 – 3 = 1. According to the 
observation program, the covariance matrix for the observed values H = P–1, is a unit 
matrix of the size (5 × 5).

Having taken into account the above assumptions and numerical data, the 
formula to calculate the estimator of vector X̂II  will take the following form:

X̂II
 = [Cov(X̂I)–1 + ATH–1A]–1ATH–1LII ⇔ ÛII
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The values of the components of each matrix contained in the above formula 
are as follows:

1

1.75 1 1.25 1
1 1.1429 1 0.8571ˆCov( ) ,
1.25 1 1.75 1
1 0.8571 1 1.1429



 
 
 
 
 
  

IX

1

3 1 1 1
1 2 1 0

,
1 1 3 1
1 0 1 2

T 

    
   
   
 
   

A H A

1 1 1

0.2111 0 0.011 0
0 0.3438 0 0.094ˆ[Cov( ) + ] ,
0.011 0 0.2111 0
0 0.094 0 0.3438

T  

  
  
 
 

  

IX A H A

1 1 1 1

0.211 0.011 0.011 0.211 0.222
0.344 0.344 0.094 0.094 0ˆ[Cov( ) + ] .
0.011 0.211 0.211 0.011 0.222
0.094 0.094 0.344 0.344 0

T T   

   
   
  
 
   

IX A H A A H

After the last matrix has been multiplied by the free term matrix, a parameter 
estimator is obtained that defines the vertical displacement of the benchmarks; i.e.:

1

2

3

4

0.57
1.91ˆ ˆ  [mm].
1.89
1.17

u

u

u

u

   
        
   
   

     

II IIX U

The random corrections applied to the observed height differences and the var-
iance for the estimated model take the following values:

        
                  
           
        

          
                

1

2

3

4

5

δ 2.2 1 1 0 0 0.28
0.57

δ 4.8 0 1 1 0 1.01
1.91

 [mm],δ 3.9 0 0 1 1 0.85
1.89

δ 1.4 1 0 0 1 0.34
1.17

δ 0.4 1 0 1 0 0.91

2 2
II

2.757σ 1.38 mm .
5 3

 

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The covariance matrix for the estimated vertical displacements of the points 
takes the following values:

2 1 1 1
II

0.2111 0 0.011 0
0 0.3438 0 0.094ˆˆCov( ) = σ [Cov( ) + ] 1.38 .

0.011 0 0.2111 0
0 0.094 0 0.3438

T  

  
   
 
 

  

II IU X A H A

Based on the covariance matrix presented above, the standard deviations for the 
determined vertical displacements of the benchmarks will be determined; i.e.:

1

2

3

4

σ( ) 0.54
σ( ) 0.69ˆσ( ) = .
σ( ) 0.54
σ( ) 0.69

u

u

u

u

   
   
   
   
   

     

IIU

Having determined the quantiles of the chi-square distribution for the k = 2 
degrees of freedom and the confidence level of (1 – α) = 0.90 it follows that coefficient 

2/ χ (α;  ) 3.1.k k   
Thus, the limit values of the standard deviations defined accord-

ing to Formula (7) for the determined vertical displacements take the following values:

1 1

2 2

3 3

4 4

σ ( ) 0.54 1.67 0.57
σ ( ) 0.69 2.14 1.91

3.1 .
σ ( ) 0.54
σ ( ) 0.69 2.14 1.17

G

G

G

G

u u
u u
u u
u u

        
                    
        
        

               

1.67 1.89

A comparison of the vertical displacements of the benchmarks to the limit val-
ues of their standard deviations proves that, at a confidence level of 1 – α = 0.90, only 
Benchmark (3) demonstrates the significant vertical movements observed in the two 
analyzed periodic measurements.

In order to compare the adjustment results obtained from the Gauss–Markov 
model with random parameters and a  traditional method of adjusting a  leveling 
network, the system of observational equations defined by formula δ2 + AX̂ = LII 
(i.e., in explicit form) will be considered once again:

1 1

2 2

3 3

4 4

1 1 0 0 2.2
δ

0 1 1 0 4.8
δ

 [mm].0 0 1 0 3.9
δ

1 0 0 1 1.4
δ

1 0 1 0 0.4

dz
dz
dz
dz

   
             
              

       
             
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As was previously found, matrix A has a defect of d = m – R(A) = 1. Therefore, 
solving this system of equations by ordinary inverse of matrix (ATA) (which rep-
resents a system of normal equations) is impossible, since the determinant of this 
matrix is equal to zero.

In order to solve this system of observational equations, it must be freed from 
the defect. It may be performed numerically by deleting the columns equal in num-
ber to the defect, which is one column to be deleted in this case – the fourth one. In 
a geometric interpretation, this will mean that Benchmark (4) that corresponds to the 
deleted column explicitly defines the reference level in the adjustment process. Such 
a model adopted for the adjustment of the observation results is expressed by the 
following system of observational equations:

   
                                           

1
1

2
2 4

3
3

4

1 1 0 16
δ

0 1 1 8
δ

 [mm],     0.0 0 1 8
δ

1 0 0 16
δ

1 0 1 0

dz
dz dz
dz

The matrices defined for this model will be denoted by the lower index 2; there-
fore, the above system of equations can be written in the following matrix form:

δ2 + AXII = LII.

With the earlier adoption of matrix H = P–1 = I, the above system of equations is 
solved according to the following matrices:



     
         
       

1
2 2 2 2

3 1 1 5 4 3
11 2 1 ,    ( ) 4 8 4 ,
8

1 1 3 3 4 5

T TA A A A

1
2 2 2 2

1 1 3 5 2
1( ) 4 4 4 4 0 .
8

1 1 5 3 2

T T 

    
     
  

A A A A

The values of the corrections to the heights of the benchmarks (determined 
based on the first survey) are calculated from the product of matrix A2

⊕L; i.e.: 

1 1

2 2
2 2

3 3

4 4

0.0019 1.9
1.9

0.0008 0.8ˆ 0.8 [mm] [m] .
0.0034 3.4

3.4
0 0

dz u
dz u
dz u
dz u



      
                                                     

X = A L
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The above calculated values of corrections dzi represent the apparent displace-
ments ūi of the benchmarks, since they were determined with the condition of dz4 = 0.

For comparison, the vertical displacements of the benchmarks obtained from 
the first model were presented as follows:

   
       
   
   

     

1

2

3

4

0.57
1.91ˆ .
1.89
1.17

u

u

u

u

IIU

The vector of random deviations δ takes the following values:

2 2

0.6
0.6

ˆ [mm],0.5
0.5
1.1

 
  
   
 
 
  

2δ L A X

 

whence 

 

2 2
2

2.314σ 1.16 mm .
5 3

 


The covariance matrix of vector X̂2 takes the following values:

2
2 1 2

2 2 2 2

5 4 3
σ̂ˆ ˆCov  σ ( ) 4 8 4 .
8

3 4 5

T 

 
     
  

X A A

Based on the above covariance matrix and variance σ2
2 = 1.16 mm2, the standard 

deviations were defined for the determined apparent displacements of the bench-
marks; i.e.:

1

2 2

3

σ( ) 0.85
σ( ) σ( ) 1.08

σ( ) 0.85

u

u

u

   
       
      

U    and   4σ( ) 0.u 

For comparison, the standard deviations for the vertical displacements obtained 
from the first model were presented as follows:

   
   
    
   
   

     

1

2

3

4

σ( ) 0.54
σ( ) 0.69

σ( ) .
σ( ) 0.54
σ( ) 0.69

u

u

u

u

IIU
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By comparing the results of adjusting the leveling network using the Gauss–
Markov model with random parameters and the second model without a defect, 
a general conclusion may be drawn that the displacements and their obtained stand-
ard deviations from the first model have smaller values than in the second model.

4.	 Conclusions

The algorithm for the estimation of the Gauss–Markov model with random param-
eters to adjust the results of periodic surveys of the networks of points proposed by the 
authors allows us to determine the most likely coordinates of the points and compo-
nents of their displacements as well as the standard deviations for these parameters.

The demonstrated numerical example for a fragment of the leveling network 
of periodically observed benchmarks illustrates various stages of implementation 
of the G-M model estimation algorithm in detail for the current survey, taking into 
account the covariance matrix for the heights of the benchmarks specified in the 
process of adjusting the output measurement.

An analysis of the results of adjusting the leveling network using the Gauss–
Markov model with random parameters and the second model without a  defect 
allows us to formulate a general conclusion that the displacements and their obtained 
standard deviations from the first model will always have smaller values than in the 
second model.
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Weryfikacja zaawansowanych procedur statystycznych 
do wyrównywania wyników w pomiarach przemieszczeń

Streszczenie: W artykule autorzy poddali weryfikacji sformułowane zasady estymacji mode-
li Gaussa–Markowa [10], w których szacowane parametry X miały charakter 
losowy. W tym celu zostały podane sposoby określania a priori macierzy ko-
wariancji CX dla estymowanych parametrów, które zostały wykorzystane do 
wyznaczenia macierzy kowariancji warunkowych wektora obserwacji L, a na-
stępnie do estymacji najbardziej prawdopodobnych wartości parametrów  X̂. 
Uzyskana w wyniku tej estymacji macierz kowariancji Cov(X̂) została wyko-
rzystana do ustalenia granicznych wartości wariancji tych parametrów.

	 Zastosowanie proponowanego sposobu estymacji modelu Gaussa–Markova do 
parametrów losowych zostało zilustrowane na przykładzie fragmentu niwe-
lacyjnej sieci punktów przeznaczonej do wyznaczania pionowych przemiesz-
czeń powierzchni osuwiska.

Słowa 
kluczowe: 	 pomiary w geodezji inżynieryjnej, model Gaussa–Markova, diagonalna ma-

cierz kowariancyjna


