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Abstract:	 The Zaer granitic massif is one of the most important Variscan granitoids in the 
Central Zone of the Western Moroccan Meseta. It is characterized by a deforma-
tion which is manifested by a network of fractures of different scales. Thanks to 
the technology currently available, many geological studies rely heavily on the 
mapping of geological lineaments, especially in structural geology. This has be-
come more reliable with access to earth observation data using optical and radar 
sensors as well as the various remote sensing techniques. Therefore, the objective 
of this work is to determine the potential of Landsat 8, ASTER, Sentinel 2 and 
radar Sentinel 1 datasets using the automatic method to extract lineaments. Fur-
thermore, this work focuses on quantitative lineament analysis to determine lin-
eament trends and subsequently compare them with global and regional tectonic 
movement trends. The lineaments obtained through different satellite images 
were validated by including the shaded relief maps, the slope map, the correla-
tion with the pre-existing faults in the geological maps as well as the field inves-
tigation. Comparison of these results indicates that Sentinel 1 imagery provides 
a better correlation between automated extraction lineaments and major fault 
zones. Thus, Sentinel 1 data is more effective in mapping geological lineaments. 
The final lineament map obtained from the VH and VV polarizations shows two 
major fault systems, mainly oriented NE-SW and NW-SE to NNW-SSE.
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1.	 Introduction

In recent decades, lineament extraction and analysis have been widely used by 
geologists [1–4]. It is an important indicator for describing tectonic events and their 
resulting fractures throughout geological history at different scales  [5]. The linea-
ment corresponds to the linear features that can be picked in satellite images [6], and 
can be a representation of a subsurface phenomenon  [7–9]. In geological studies, 
lineaments are generally described as fractures, faults, joints, or boundaries between 
geological formations [10, 11]. Other types of lineaments can be geomorphological 
implications [12, 13] or artificial objects (road, bridge, etc.) [14, 15]. There are three 
essential approaches to extracting geological lineaments using remote sensing data: 
(i) manual method [13, 16]; (ii) semi-automatic method [17, 18], and (iii) automat-
ic method [19–24]. Therefore, the manual and semi-automatic methods were influ-
enced by the expertise of the interpreter, but the automatic approach mainly relies 
on the performance of the algorithms as well as satellite image data [25].

Lineaments, which correspond to fractures, show the pathways of fluid flow 
processes [26, 27] such as groundwater and hydrothermal solutions [28]. Thus, line-
ament mapping is a crucial element in many geological studies, especially in mineral 
and hydrocarbon exploration [22, 29] as well as in hydrogeology [20]. Additionally, 
lineaments can be employed for structural analysis to understand and reconstruct 
the geological history of a region [28, 30].

Advances in computer hardware technology have largely supported the study 
of geological structures using remote sensing [31]. Nowadays, with the recent de-
velopments in the earth observation system by applying remote sensing, multiple 
data sources and techniques are used for lineament characterization [3, 22]. Thus, 
automatic methods have become more practical and less time-consuming compared 
to manual methods [27, 32]. As a result, remote sensing applications represent a new 
development in the discipline of applied geology [33].

The objective of this work is to evaluate the capacities of several generations of 
satellites (Landsat 8, ASTER, Sentinel 2 and Sentinel 1) to map lineaments by the au-
tomatic extraction method. This study is considered as the starting point for future 
field work such as mining and hydrological explorations, as well as infrastructure 
engineering. This work is the first of its kind in the study area and focuses on the 
quantitative analysis of lineaments. Additionally, lineaments trends were compared 
to global and regional tectonic movement trends to understand the geodynamic con-
text of this region.

2.	 Geological Setting

The Variscan belt of Morocco constitutes the southern extension of the Variscan 
belt of Europe [34, 35]. In the Central Meseta, the major phase of the Variscan belt 
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was characterized by Late Carboniferous deformations  [36,  37]. Furthermore, 
the emplacement of granitoids of ages ranging from 320  Ma to 270  Ma has also 
been associated with this major phase, including Zaer granite  [38], the subject of 
this study.

The granite massif of Zaer is located in the Western Moroccan Meseta [37, 39], 
about 75 km south of the city of Rabat and 100 km ESE of the city of Casablanca. The 
Zaer granitic pluton is one of the most important Variscan granitoids in the Central 
Zone of the Western Moroccan Meseta (Fig. 1). It is elliptical in shape with an area 
of more than 450 km2 [42, 43] (Fig. 2). Structurally, the granite massif of Zaer ap-
pears within the Paleozoic fields of the Khouribga-Oulmes anticlinorium (Fig. 2b). 
It is mainly oriented NE-SW parallel to the major Variscan structures of the Meseta 
domain [45, 46]. 

Fig. 1. Structural map of the Variscan domain of Meseta
Source: [40], modified after [41]
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The host rocks of this granite massif are characterized by anchi- to epimetamor-
phic rocks. On the lithological level, the surrounding area is distinguished by the 
presence of Paleozoic formations including shales of Ordovician age to the east of 
the Zaer granite massif. As for the west of this massif, it is characterized by Upper 
Ordovician quartzites as well as Lower Devonian shales and limestones [37] (Fig. 2c). 
Paleozoic formations show an aureole of metamorphism around the Zaer granitic 
pluton, with a width of 1 km to 3 km [43, 47].

Fig. 2. Location of the study area on a national scale (a); different structural units of the 
Moroccan Variscan Massif (b): 1 – Casablanca anticlinorium, 2 – Western synclinorium, 

3 – Khouribga-Oulmes anticlinorium, 4 – Fourhal-Telt synclinorium,  
5 – Kasbat-Tadla-Azrou anticlinorium; lithologic map of the study area (c)

Source: fig. b [44], fig. c [37, 43, 47]

a)	 b)

c)
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The Zaer granite massif consists essentially of two granite units [43, 47] (Fig. 2c): 
(i) the external unit occupies the northwestern and southern part of the granite 
formed mainly of biotite granodiorite and (ii) the internal unit formed by leucogran-
ite with two micas. According to the radiometric ages (Rb-Sr) obtained on the main 
granite facies, the emplacement of the Zaer granite ranges between the Westphalo-
Stephanian (303 Ma ±13 Ma) and the Autunian (279 Ma ±11 Ma) [38, 48].

3.	 Materials and Methods
3.1.	 Description of Data
Landsat 8 was released in 2013, is one of the latest generations of the Landsat series 

of satellites under the collaboration with the United States Geological Survey (USGS) 
and the National Aeronautics and Space Administration (NASA) [49, 50]. It carries 
two sensors: operational land imager (OLI) and thermal infrared sensor (TIRS). On 
the one hand, nine spectral bands define the OLI, including the visible  (VIS), the 
near infrared (NIR), the short-wave infrared (SWIR) and the panchromatic band. On 
the other hand, the TIRS having two spectral bands, each characterized by 100 m in 
terms of spatial resolution (Table 1) [49, 51]. Landsat 8 OLI has been used in several 
works for lineament extraction [3, 26, 52].

Table 1. Characteristics of Landsat 8 and ASTER sensors

Landsat 8 ASTER

Bands Spectral range 
[μm]

Resolution  
[m]

Band 
number Spectrometer Spectral range  

[μm]
Resolution  

[m]

1. Coastal aerosol
2. Blue
3. Green
4. Red
5. NIR
6. SWIR1
7. SWIR2
8. Panchromatic
9. SWIR/Cirrus
10. TIRS 1
11. TIRS 2

0.43–0.45
0.45–0.51
0.53–0.59
0.64–0.67
0.85–0.88
1.57–1.65
2.11–2.29
0.50–0.68
1.36–1.38

10.60–11.19
11.50–12.51

30
30
30
30
30
30
30
15
30
100
100

1
2
3

VNIR
0.52–0.60
0.63–0.69
0.78–0.86

15

4
5
6
7
8
9

SWIR

1.600–1.700
2.145–2.185
2.185–2.225
2.235–2.285
2.295–2.365
2.360–2.430

30

10
11
12
13
14

TIR

8.125–8.475
8.475–8.825
8.925–9.275
10.25–10.95
10.95–11.65

90

The advanced spaceborne thermal emission and reflection radiometer, known 
as ASTER, is a multispectral image. The Ministry of Economy, Trade and Indus-
try (METI) of Japan developed this multispectral sensor. Subsequently, NASA took 
over responsibility for its operation [53–55]. The Terra platform saw the launch of 
ASTER in December 1999  [56–58]. ASTER covers 14  bands including  [53, 59–63] 
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(Table 1): (i) three bands in the visible and near infrared (VNIR) with a spatial res-
olution of 15 m; (ii) six bands in the short-wave infrared (SWIR) are characterized 
by a spatial resolution of 30 m, and (iii) five bands in the thermal infrared (TIRS) 
through a spatial resolution of 90 m. Additionally, geological mapping and mineral 
exploration have made extensive use of the ASTER sensor [2, 64–67].

The Copernicus space program includes the Sentinel satellites, which are oper-
ated by the European Space Agency (ESA) [68]. The latter has developed several sat-
ellite missions with different aspects of Earth observation [69]. Sentinel 2 and Senti-
nel 1 are two satellite images acquired respectively by the optical and SAR (synthetic 
aperture radar) systems [70]. In order to meet revisit and coverage requirements, 
each Sentinel mission relies on a constellation of two satellites [71]. June 2015 saw 
the launch of the Sentinel 2A sensor [72]. It contains 13 spectral bands using var-
ious spatial resolutions (10 m, 20 m and 60 m) [70, 73, 74]. The Sentinel 1A radar, 
which was launched in  2014, includes a C-band  SAR instrument that offers vari-
ous data acquisition modes. The main acquisition mode for land is called interfer-
ometric wide (IW) swath mode [75]. This mode allows the combination of a broad 
width of 250 km and a large spatial surface (5 × 20 m) [75]. Table 2 summarizes the 
characteristics of these satellites. Sentinel 2A and Sentinel 1A products have been 
widely used for several geological applications [76, 77], especially for mapping lin-
eaments [21, 78].

Table 2. Characteristics of Sentinel 2A and Sentinel 1A sensors

Sentinel 2A
Sentinel 1A

Bands Spectral range 
[μm]

Resolution  
[m]

1. Coastal aerosol
2. Blue
3. Green
4. Red
5. Red Edge 1
6. Red Edge 2
7. Red Edge 3
8. NIR
8A. NIR narrow
9. Water vapour
10. SWIR/Cirrus
11. SWIR 1
12. SWIR 2

0.433–0.453
0.458–0.523
0.543–0.578
0.650–0.680
0.698–0.713
0.733–0.748
0.773–0.793
0.785–0.900
0.855–0.875
0.935–0.955
1.360–1.390
1.566–1.655
2.100–2.280

60
10
10
10
20
20
20
10
20
60
60
20
20

SAR frequency [GHz]

Imaging mode

Swath [km]

Resolution Gr × Az [m]

Polarization

Data product

5.4

IW

250

5 × 20

VV + VH

Ground Range 
Distance (GRD)

In order to confirm the accuracy of lineament extraction, this study was based 
on the shaded relief maps as well as the slope map. These maps are produced from 
the ASTER GDEM (global digital elevation model). The latter was extracted from the 
ASTER sensor. On June 29, 2009, GDEM was released jointly with NASA and METI, 
as part of the Global Earth Observing System contribution  [79]. ASTER GDEM is 
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the most recent digital topographic dataset, covering the global surface of the earth 
with 30 m in terms of spatial resolution [53]. Besides, ASTER GDEM has been widely 
used in many studies to verify geological lineaments [21, 80, 81]. In addition, this 
work also relied on the faults extracted from the geological maps (Ezzhiliga and 
Ait Ammar; 1:50,000), on the faults derived from the facies map of the Zaer pluton 
by [82] (1:20,000) and on the results of the field survey.

3.2.	 Pre-processing

The pre-processing step is important before the processing of optical and radar 
remote sensing images. The main pre-processing and processing steps are shown in 
the flowchart (Fig. 3).

Fig. 3. Methodological flowchart of this study
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The Landsat 8 image used corresponds to level 1T (corrected terrain), acquired 
on October 7, 2017. It is already geometrically corrected by applying the World Ge-
odetic System 1984 (WGS84) datum and the Universal Transverse Mercator (UTM) 
projection [83]. The pre-processing step includes radiometric calibration and atmos-
pheric correction. First, a radiometric calibration was applied in order to transform 
the digital numbers into values reflected by the surface. Afterward, the FLAASH 
(fast line-of-sight atmospheric analysis of spectral hypercubes) module was per-
formed to correct the atmosphere [3, 84].

Concerning the ASTER image, obtained on November 8, 2005, at level 1T (preci-
sion terrain corrected registered at-sensor radiance). It comes with the WGS84 world 
datum and Universal Transverse Mercator (UTM). In addition, this level is also radi-
ometrically calibrated [85]. Thereafter, with the same atmospheric correction meth-
od used in the Landsat data, the atmospheric correction was implemented using the 
FLAASH module [86].

The VNIR and SWIR bands of the OLI and ASTER images were resampled in 
this study with a spatial resolution of 15 m using the Gram–Schmidt pansharpening 
method. The panchromatic band of the OLI sensor was applied to generate data with 
a high spatial resolution of 15 m [87]. The Gram–Schmidt method invented by [88] has 
emerged as one of the most widely used algorithms for pansharpening of multispec-
tral images [89]. It is based on merging a panchromatic image characterized by higher 
spatial resolution with a set of spectral bands with lower spatial resolution [88]. The 
Gram–Schmidt method is widely used in many remote sensing researches [90, 91].

For the Sentinel 2A image, acquired on July 5, 2020, distributed at level 2A (bot-
tom of atmosphere corrected reflectance). These data have been radiometrically cali-
brated and geometrically corrected [92] using the same global datum and projection 
as the data from Landsat 8 and ASTER. Furthermore, this product is atmospherically 
corrected by the European Space Agency (ESA) [92–94]. Thereafter, a spatial resolu-
tion of 10 m was used to resample the spectral bands.

With regard to the Sentinel 1A radar image, it was obtained on July 14, 2018, 
at level 1 GRD (ground range detected). The pre-processing workflow consists of 
three steps. First, the radiometric calibration procedure was used to transform the 
digital pixel values into backscatter values reflected from the surface [90, 95]. Sec-
ond, ‘‘Lee” speckle filtering was used to increase image quality by reducing speckle 
noise [12, 95]. Finally, with the use of the range Doppler terrain correction technique 
for the correction of the geolocation accuracy of the imagery and transformed into 
geographical coordinates (latitude/longitude, WGS84) [96] from the image of the 
Shuttle Radar Topography Mission (SRTM) with a spatial resolution of 90 m [68, 95]. 
After the pre-processing step, the spatial resolution of the Sentinel 1A image is 10 m.

In order to unify the same global geodetic system and the same projection of 
satellite images and geological maps. All satellite images were georeferenced using 
the Lambert conformal conic projection; North Morocco zone, adopted in Morocco 
(spheroid: Clarke 1880, datum: Merchich).
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3.3.	 Processing

In this study, the processing step initially focused on the use of Sobel filters on 
the first Principal Component of the optical images and on the VH as well as VV po-
larizations of the radar image. Subsequently, the line module algorithm was applied 
to the filtered images in order to extract the geological lineaments.

Principal Component Analysis
Principal component analysis (PCA) is a statistical technique commonly employed 

in geological research [26, 97, 98], particularly for mineral exploration and geological 
mapping [90]. This technique consists of selecting uncorrelated linear combinations 
of variables [99, 100] in order to create new bands called principal components (PC) 
from the information contained in the spectral bands [91, 101], so that each component 
extracts successive linear combinations in decreasing order of variance [99, 100]. The 
first PCA band (Fig. 4) contains high data compared to the second band, and so on; 
because they include very little data, the latest PCA bands seem noisy [62, 102].

Fig. 4. PC1 of the OLI (a), ASTER (b), and Sentinel 2A (c) sensors,  
in addition to the VH (d) and VV (e) polarizations of the Sentinel 1A radar

a)	 b)	 c)

d)	 e)
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Walsh and Mynar  [103] evaluated the effectiveness of five different improve-
ment techniques to identify lineaments which are the mean value of all bands, 
principal component analysis  (PCA), band ratio  (BR), histogram equalization and 
high-pass digital filtering. Based on this comparison, the results demonstrated that 
PCA is more effective for lineament mapping. PCA has been used in many stud-
ies for the determination of lineaments [28, 98, 104]. The directional filtering tech-
nique was applied to the PC1 extracted from each optical image. Generally, the PC1 
was used because it contains the maximum of information and is characterized by 
a well-observed relief [9, 105].

Directional Filtering
Directional filtering is a technique that enhances the linear features that are to 

be identified in particular directions and edge enhancement in images [15, 52]. This 
technique is widely used to detect geological lineaments (faults and fractures) [106]. 
Therefore, the application of directional filters remains the best way to identify 
structural lineaments [21]. In this study, directional filters were used to apply to the 
first principal component as well as the VH and VV polarizations using the follow-
ing four main directions: N-S, NE-SW, E-W and NW-SE with a 7 × 7 kernel matrix 
(Table 3). Figure 5 shows an example of directional filters derived from the VH po-
larization of the Sentinel 1A image.

Table 3. Four main directional filters with 7 × 7 kernel matrix

N-S NE-SW

1 1 1 2 1 1 1 0 1 1 1 1 1 2

1 1 2 3 2 1 1 −1 0 2 2 2 3 1

1 2 3 4 3 2 1 −1 −2 0 3 4 2 1

0 0 0 0 0 0 0 −1 −2 −3 0 3 2 1

−1 −2 −3 −4 −3 −2 −1 −1 −2 −4 −3 0 2 1

−1 −1 −2 −3 −2 −1 −1 −1 −3 −2 −2 −2 0 1

−1 −1 −1 −2 −1 −1 −1 −2 −1 −1 −1 −1 −1 0

E-W NW-SE

−1 −1 −1 0 1 1 1 2 1 1 1 1 1 0

−1 −1 −2 0 2 1 1 1 3 2 2 2 0 −1

−1 −2 −3 0 3 2 1 1 2 4 3 0 −2 −1

−2 −3 −4 0 4 3 2 1 2 3 0 −3 −2 −1

−1 −2 −3 0 3 2 1 1 2 0 −3 −4 −2 −1

−1 −1 −2 0 2 1 1 1 0 −2 −2 −2 −3 −1

−1 −1 −1 0 1 1 1 0 −1 −1 −1 −1 −1 −2
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Fig. 5. Filtered images derived from the VH polarization of the Sentinel 1A sensor  
in the four main directions: a) N-S; b) NE-SW; c) E-W; d) NW-SE

a)	 b)

c)	 d)
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Lineament Extraction
The automatic extraction in this study was carried out using the line module 

algorithm of the PCI Geomatica software. This algorithm consisted of two essential 
steps, namely edge detection followed by line detection, each step is characterized 
by a set of parameters [20, 80]. Table 4 describes these parameters in detail.

The automatic lineament extraction in this work was achieved by testing differ-
ent parameters of optical and radar datasets. Table 5 represents the parameters used 
in the line module of the PCI Geomatica software to obtain the ideal parameters. 
These parameters were established taking into account the visual interpretation.

Table 4. Various parameters of the line module

Step Parameter Unit Description

Edge detection

RADI  
(filter radius) pixel

It specifies the radius of the filter applied 
for edge detection, whose values should be 
between 3 and 8, a higher value tends to 
include more noise

GTHR  
(edge gradient threshold) unitless

It defines the minimum threshold of the 
gradient level to detect contours. Values 
between 10 and 70 give good results

Line detection

LTHR  
(curve length threshold) pixel

The minimum length of a curve that can be 
considered a lineament, values between 10 
and 50 are desirable

FTHR  
(line fitting threshold) pixel

It indicates the biggest error that can occur 
when adjusting the line segment to create 
a lineament, ideal values range from 2 to 5

ATHR  
(angular difference 

threshold)
degrees

It is used to specify the largest angle that 
can be formed between two lineaments to 
be joined. Values ranging from 3 to 20 are 
acceptable

DTHR  
(linking distance 

threshold)
pixel

It presents the smallest distance necessary 
to connect two lineaments. 10 to 45 is 
a reasonable range for gradient values

Table 5. Values applied to line module parameters to automatically extract lineaments

Parameters Applicable values

RADI 8

GTHR 50

LTHR 10

FTHR 3

ATHR 20

DTHR 20
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4.	 Validation

Validation is one of the most significant steps in lineament extraction. To verify 
the results obtained from the study area, the extracted lineaments were first com-
pared to the shaded relief maps and the slope map produced from the GDEM. In 
addition, these lineaments were compared to pre-existing faults in geological maps 
and also to field investigation.

4.1.	 Validation Using Shaded Relief Maps
Shaded relief maps are visual representations of the terrain [19, 107], derived 

from global digital elevation model (GDEM) data [108]. Thus, lineaments may exist 
where there are limits between shaded and unshaded zones [27]. A shaded relief map 
is produced by changing the virtual azimuth and elevation of the sun [19]. After a com-
parison of the different sun position angles, azimuths 0, 45, 90 and 135 were chosen be-
cause they are best exposed in shaded and unshaded areas [19]. It is characterized by 
an elevation angle of 45 degrees showing the altitude of the sun above the horizon [27].

4.2.	 Validation Using the Slope Map
The slope map is a product also derived from GDEM data [109, 110]. It is an 

important parameter which is widely used to validate the extraction of lineaments. 
In general, abrupt variations in slope values are frequently associated with the exist-
ence of linear structures [13, 111–114].

4.3.	 Validation Using Pre-existing Major Faults and Field Survey
In this work, a comparison of the extracted lineaments was made with the 

pre-existing major faults in the geological maps and the facies map of the Zaer plu-
ton. In addition, several locations of structural lineaments in the work area were 
selected to validate the results obtained by the automatic lineament extraction.

5.	 Results and Discussion
Pre-processing of optical and radar images plays an important role in reducing 

errors associated with data acquisition, such as atmospheric and cloud cover effects, 
which improves the visibility of linear features during the processing step in order 
to obtain a more detailed mapping [115]. For the optical images, the extracted linea-
ments were carried out on the directional filters of Sobel applied on the first principal 
component for each sensor. For the radar image, lineament extraction was performed 
on Sobel directional filters applied directly to the VH and VV polarizations. Therefore, 
the automatic extraction procedure was applied with the PCI Geomatica software, us-
ing the line module algorithm. This algorithm depends on the detection of edge and 
line, which is characterized by its speed and reliability in the results obtained [116].

In recent years, shaded relief and slope maps have been considered a refer-
ence source for lineament validation. In addition, the lineaments obtained from the 
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automatic extraction were superimposed on the shading and slope maps to check 
the correspondence with the illumination areas and abrupt changes in slope, re-
spectively. Lineaments obtained from OLI, ASTER, and Sentinel 2A show much less 
correlation with shading and abrupt changes in slope. Generally, the lineaments are 
also found in the regions with no change in values (low values) (Figs. 6, 7).

Fig. 6. Superposition of lineaments resulting from optical images OLI (a), ASTER (b),  
and Sentinel 2A (c) on the N0° shaded relief map

a)	 b)

c)
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On the other hand, the results show that the majority of lineaments derived 
from the VH and VV  polarizations are mainly found along the boundary of the 
shaded and unshaded areas (Fig. 8), as well as in the regions where the slope values 
change abruptly (Fig. 9). Thus, this explains why radar data is more sensitive to ge-
omorphology than optical data [21, 80].

	 a)	 b)

	 c)

Fig. 7. Superposition of lineaments extracted from optical images OLI (a), ASTER (b),  
and Sentinel 2A (c) on the slope map
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Fig. 8. Superposition of lineaments extracted from the VH (a) and VV (b)  
polarizations of Sentinel 1A on the N0° shaded relief map

	 a)	 b)

Fig. 9. Superposition of lineaments extracted from VH (a) and VV (b)  
polarizations (Sentinel 1A) on the slope map

	 a)	 b)
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In the present study, the superposition was used to analyze the distribution 
between the lineaments taken through the satellite imagery and the faults extracted 
from the geological maps related to the study area. The results of the analysis re-
vealed that the concentration of lineaments in OLI, ASTER, and Sentinel 2A images 
are mostly randomly concentrated throughout the study area (Figs. 10, 12a–c).

	 a)	 b)

	 c)

Fig. 10. Superposition of the lineaments obtained from the optical images of OLI (a),  
ASTER (b), and Sentinel 2A (c) on the major faults  

extracted from the geological maps (1:50,000)
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In contrast, the lineaments derived from the VH and VV images indicate a good 
correlation with the faults (Figs. 11, 12d, e). Consequently, the radar image (VH and 
VV  polarizations) gives more effective lineaments where there are steep slopes, 
shadow areas and rough terrain. Moreover, radar sensors depend essentially on the 
surface topography [117] which confirms the greater sensitivity of Sentinel 1 radar 
data to geomorphology than optical data.

Fig. 11. Superposition of lineaments  
obtained by VH (a) and VV (b) polarizations (Sentinel 1A)  

on the major faults extracted from geological maps of the study area 1:50,000

a)	 b)

The results obtained were used for structural analysis to understand the spatial 
distribution of lineaments in the working area. This task is based on three processes 
including length, density, and orientation. Moreover, these results can be used to 
compare the trends of the lineaments obtained from the VH and VV polarizations 
with the trends of the global and regional tectonic movements.
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5.1.	 Lineament Analysis
Lineament Length
Statistical lineament analysis (Fig. 13) showed that the numbers of lineaments 

resulting from the optical images are 2607, 2086 and 5997 of OLI, ASTER, and Senti-
nel 2A, respectively. Moreover, the VH and VV polarizations represent respective-
ly 3177 and 2961 lineaments. Based on the length histograms, it can be noted that the 
most dominant lengths are between 200 m and 300 m for OLI and ASTER as well as 
between 100 m and 200 m for Sentinel 2A, VH and VV. Regarding the lineament val-
ues, the length varies between 30 m and 999 m for OLI. Also, the values associated 
with the ASTER image range from 30 m to 999 m. Values between 20 m and 982 m 
correspond to Sentinel 2A. The lengths of Sentinel 1A lineaments vary between 18 m 
and 944 m for VH and between 18 m and 995 m for VV. Moreover, the difference in 
results is explained by the distinct nature of each sensor.

Fig. 12. Superposition of the lineaments obtained from the OLI (a), ASTER (b),  
and Sentinel 2A (c) images, in addition to the VH (d) and VV (e) polarizations  
on the major faults extracted from the facies map of the Zaer pluton (1:20,000)

a)	 b)	 c)

d)	 e)
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Fig. 13. Distribution histograms showing the number of lineaments as a function of length 
in the different satellite images of OLI (a), ASTER (b), and Sentinel 2A (c),  

in addition to VH (d) and VV (e) polarizations of Sentinel 1A

	a)		  b)

	c)		  d)

		  e)
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Lineament Density
Lineament density is an important tool widely used in spatial analysis [12, 118]. 

It is determined from the frequency of lineaments calculated per unit area (num-
ber of lineaments per square kilometer) [2,  20,  119]. In the study area, lineament 
density maps were produced to discover the correlation between the distribution 
of pre-existing faults and the concentration of lineaments. Concerning the Senti-
nel 1A sensor, the VH and VV images provide a dense network of lineaments in 
the zones associated with the faults, which are located in areas with significant geo-
morphology (Fig. 14d, e). Generally, the OLI, ASTER, and Sentinel 2A images show 
an abundance of lineaments in the granite and also in the surrounding area of the 
granite (Fig. 14a–c). Moreover, the high values of the optical images randomly cover 
most of the study area. The evaluation of the results obtained by different satellite 
images confirms that the Sentinel 1A radar data are the best correlated with pre-
existing faults. This also proves the results obtained by the shaded relief maps and 
the slope map.

Fig. 14. Lineament density maps extracted from optical images of OLI (a), ASTER (b), 
and Sentinel 2A (c), in addition to VH (d) and VV (e) polarizations of Sentinel 1A

a)	 b)	 c)

d)	 e)
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Lineament Orientation
The orientation of the lineament facilitates the determination of the main frequen-

cies of the study area. Lineaments are usually grouped by an angular spacing of 10° [20]. 
The directions of the lineaments obtained can be compared to the directions related to ex-
isting faults in the studied area (Fig. 15). The resulting rose diagram indicates that the lin-
eaments derived from the OLI and ASTER data presented a dominance of the NE-SW to 
ENE-WSW and E-W systems (Fig. 15a, b). Systems oriented N-S, NE-SW, E-W and NW-
SE were well detected in the Sentinel 2A data (Fig. 15c). The main lineaments provided 
by the radar data are oriented NE-SW and NW-SE to NNW-SSE respectively for the 
VH and VV polarizations (Fig. 15d, e). Therefore, the orientations obtained by the radar 
image indicate a similarity with the orientations of the pre-existing faults (Fig. 15d–g).

Fig. 15. Rose diagrams showing the main orientations of lineaments obtained from OLI (a), 
ASTER (b), Sentinel 2A (c), in addition to VH (d) and VV (e) polarizations;  

faults orientations extracted from the geological maps (1:50,000) (f)  
and from the facies map (1:20,000) (g) of the study area

	 a)		  b)		  c)

		  d)		  e)

		  f)		  g)
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5.2.	 Field Investigation

The results obtained through the various optical images (OLI, ASTER, and Sen-
tinel 2A) as well as the radar data (VH and VV polarizations) indicate that the radar 
image is more accurate in the process of extracting of geological lineaments. There-
fore, the combination of lineaments derived from the polarizations of VH and VV 
gives more accurate results  (Fig. 16a). These interpretations relied on visual com-
parison of results with field investigation and existing data. In this study, several 
sites were chosen in the field for the validation of the results obtained from the radar 
image (VH and VV polarizations) (Fig. 16).

Fig. 16. Location of the field photographs on the lineament map obtained  
by the combination of the extracted lineaments of the VH and VV polarizations,  
with the extracted lineaments (in black) and the validated lineaments (in red) (a)  

and zoom on lineaments verified in the field (b)

a)	 b)

Figure 17 provides a visual representation of the validated lineament observed 
in the field. 
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Fig. 17. Field photographs show some examples of lineament verified in the study area  
(see Figure 16 for location 1–4): E-W oriented fault (a) with striations in the fault mirror (b); 
sets of NE-SW oriented parallel faults in biotite granodiorite (c); NW-SE oriented fault (d) 

with slip faces (striations) (e); NW-SE oriented quartz veins (f)

	 a)	 b)

	 c)

	 d)	 e)

	 f)
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Moreover, Figure 17 also shows the main aspects and characteristics of the line-
ament, helping in its overall understanding. The selection of these sites was mainly 
based on their accessibility. In addition, the field investigation strongly supports 
the other validation parameters (shaded relief maps, slope map and pre-existing 
faults). The faults in the working area are marked by the existence of striation on 
the fault surfaces. Striations are formed on fault surfaces by friction between two 
solids [120, 121]. These striations are considered a robust indicator for fault identi-
fication [122] as well as for determining fault slip direction [120, 123]. For the frac-
tures examined in this study, it appears that most of them are oriented NE-SW and 
NW-SE with striations on fault surfaces in some places (Fig. 17).

5.3.	 Relationship between Lineament Directions  
and Tectonic Movement Directions

In Morocco, Variscan deformation began in the Late Devonian and continued 
until the Late Carboniferous. In general, three main phases have been distinguished 
in the realization of the Variscan deformation [36]: (i) the Late Devonian phase or 
Eovariscan phase, well developed in the eastern areas of the Moroccan Meseta and 
in the allochthonous alpine domains of the Rif; (ii) the Visean phase restricted to the 
boundary between the east and west of the Moroccan Meseta. Therefore, the two 
previous phases of compression were contemporaneous with the development of 
transtensive sedimentary basins that extended between the Late Devonian and the 
Early Carboniferous and (iii) the Late Carboniferous phase, during this period the 
entire Variscan domain, which includes the Western Moroccan Meseta and the An-
ti-Atlas, was affected by regional shortening.

According to the results obtained from the final lineament map, the Zaer mas-
sif and its surroundings mainly present two fracture systems oriented NE-SW and 
NW-SE to NNW-SSE. Furthermore, the Late Carboniferous deformation field of 
the Western Moroccan Meseta plutons, including the Zaer granitic pluton, is dis-
tinguished by a NW-SE shortening and a NE-SW horizontal stretching associated 
with the movement of strike-slips oriented essentially dextral ENE [124, 125]. This 
deformation field is part of the global tectonic regime associated with continental 
convergence movement. In addition, this era was marked by the westward displace-
ment of Africa during the Late Carboniferous [124, 126].

The granite massif of Zaer presents a distribution parallel to the NE-SW faults. It 
is similar to the distribution of other Late Carboniferous granitic plutons from West-
ern Moroccan Meseta, which indicate alignments parallel to NE-SW and ENE-WSW 
faults. These faults correspond to those inherited from the Proterozoic basement. 
Subsequently, these faults were reactivated during the Variscan orogeny [125, 127]. 
The NW-SE to NNW-SSE system is well expressed in different parts of central Mo-
rocco, including the Zaer granite and its surroundings. This direction is related to 
the replays of the submeridian faults of the Precambrian basement [128, 129].
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6.	 Conclusion

The objective of this work was to compare the datasets of the optical sensors 
of Landsat 8, ASTER, Sentinel 2 as well as the radar sensor of Sentinel 1 in the au-
tomatic extraction of lineaments. The Sentinel 1 sensor gives greater accuracy than 
optical sensors, according to a comparison of the results obtained which included 
the shaded relief maps, the slope map, the correlation with the pre-existing faults 
in the geological maps as well as the field survey. The performance of radar data 
can be attributed to the high sensitivity of geomorphology compared to optical data 
which is affected by soil occupation. The methodology adopted generally depends 
on the availability of a set of techniques (principal component analysis and direc-
tional spatial filters) that have been applied to improve the image quality for auto-
matic lineament extraction and analysis. Thus, the methodological approach used in 
the present study showed high efficiency in automatic lineament extraction, which 
can be applied quickly and inexpensively to extract geological lineaments in other 
similar areas. Lineament mapping is an important part of any structural geological 
study. In automatic lineament extraction, the accuracy and quality of the extracted 
lineaments not only depend on the input parameters of the PCI software, but also on 
the resolution of the satellite images. Therefore, the resolution of satellite images can 
have a strong influence on the accuracy and reliability of the extracted lineaments. 
Moreover, the results of this study confirm that the radar image will be very useful 
in mining and hydrogeological exploration.
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