Noura Zoraa¹, Mohammed Raji², Hassan El Hadi³, Soufiane Maimouni⁴, Hicham Si Mhamdi⁵, Aicha Reddad⁶, Ghalem Zahour⁷, Achraf Ait-Yazza⁸

Mapping and Assessment of Geological Lineaments with the Contribution of Earth Observation Data: A Case Study of the Zaer Granite Massif, Western Moroccan Meseta

Abstract: The Zaer granitic massif is one of the most important Variscan granitoids in the Central Zone of the Western Moroccan Meseta. It is characterized by a deformation which is manifested by a network of fractures of different scales. Thanks to the technology currently available, many geological studies rely heavily on the mapping of geological lineaments, especially in structural geology. This has become more reliable with access to earth observation data using optical and radar sensors as well as the various remote sensing techniques. Therefore, the objective of this work is to determine the potential of Landsat 8, ASTER, Sentinel 2 and radar Sentinel 1 datasets using the automatic method to extract lineaments. Furthermore, this work focuses on quantitative lineament analysis to determine lineament trends and subsequently compare them with global and regional tectonic movement trends. The lineaments obtained through different satellite images were validated by including the shaded relief maps, the slope map, the correlation with the pre-existing faults in the geological maps as well as the field investigation. Comparison of these results indicates that Sentinel 1 imagery provides a better correlation between automated extraction lineaments and major fault zones. Thus, Sentinel 1 data is more effective in mapping geological lineaments. The final lineament map obtained from the VH and VV polarizations shows two major fault systems, mainly oriented NE-SW and NW-SE to NNW-SSE.

Keywords: lineament extraction, Landsat 8, ASTER, Sentinel, Zaer

Received: 24 November 2022; accepted: 12 July 2023

© 2023 Author(s). This is an open access publication, which can be used, distributed and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.
1. Introduction

In recent decades, lineament extraction and analysis have been widely used by geologists [1–4]. It is an important indicator for describing tectonic events and their resulting fractures throughout geological history at different scales [5]. The lineament corresponds to the linear features that can be picked in satellite images [6], and can be a representation of a subsurface phenomenon [7–9]. In geological studies, lineaments are generally described as fractures, faults, joints, or boundaries between geological formations [10, 11]. Other types of lineaments can be geomorphological implications [12, 13] or artificial objects (road, bridge, etc.) [14, 15]. There are three essential approaches to extracting geological lineaments using remote sensing data: (i) manual method [13, 16]; (ii) semi-automatic method [17, 18], and (iii) automatic method [19–24]. Therefore, the manual and semi-automatic methods were influenced by the expertise of the interpreter, but the automatic approach mainly relies on the performance of the algorithms as well as satellite image data [25].

Lineaments, which correspond to fractures, show the pathways of fluid flow processes [26, 27] such as groundwater and hydrothermal solutions [28]. Thus, lineament mapping is a crucial element in many geological studies, especially in mineral and hydrocarbon exploration [22, 29] as well as in hydrogeology [20]. Additionally, lineaments can be employed for structural analysis to understand and reconstruct the geological history of a region [28, 30].

Advances in computer hardware technology have largely supported the study of geological structures using remote sensing [31]. Nowadays, with the recent developments in the earth observation system by applying remote sensing, multiple data sources and techniques are used for lineament characterization [3, 22]. Thus, automatic methods have become more practical and less time-consuming compared to manual methods [27, 32]. As a result, remote sensing applications represent a new development in the discipline of applied geology [33].

The objective of this work is to evaluate the capacities of several generations of satellites (Landsat 8, ASTER, Sentinel 2 and Sentinel 1) to map lineaments by the automatic extraction method. This study is considered as the starting point for future field work such as mining and hydrological explorations, as well as infrastructure engineering. This work is the first of its kind in the study area and focuses on the quantitative analysis of lineaments. Additionally, lineaments trends were compared to global and regional tectonic movement trends to understand the geodynamic context of this region.

2. Geological Setting

The Variscan belt of Morocco constitutes the southern extension of the Variscan belt of Europe [34, 35]. In the Central Meseta, the major phase of the Variscan belt
was characterized by Late Carboniferous deformations [36, 37]. Furthermore, the emplacement of granitoids of ages ranging from 320 Ma to 270 Ma has also been associated with this major phase, including Zaer granite [38], the subject of this study.

The granite massif of Zaer is located in the Western Moroccan Meseta [37, 39], about 75 km south of the city of Rabat and 100 km ESE of the city of Casablanca. The Zaer granitic pluton is one of the most important Variscan granitoids in the Central Zone of the Western Moroccan Meseta (Fig. 1). It is elliptical in shape with an area of more than 450 km² [42, 43] (Fig. 2). Structurally, the granite massif of Zaer appears within the Paleozoic fields of the Khouribga-Oulmes anticlinorium (Fig. 2b). It is mainly oriented NE-SW parallel to the major Variscan structures of the Meseta domain [45, 46].

Fig. 1. Structural map of the Variscan domain of Meseta
Source: [40], modified after [41]
The host rocks of this granite massif are characterized by anchi- to epimetamorphic rocks. On the lithological level, the surrounding area is distinguished by the presence of Paleozoic formations including shales of Ordovician age to the east of the Zaer granite massif. As for the west of this massif, it is characterized by Upper Ordovician quartzites as well as Lower Devonian shales and limestones [37] (Fig. 2c). Paleozoic formations show an aureole of metamorphism around the Zaer granitic pluton, with a width of 1 km to 3 km [43, 47].

![Fig. 2. Location of the study area on a national scale (a); different structural units of the Moroccan Variscan Massif (b): 1 – Casablanca anticlinorium, 2 – Western synclinorium, 3 – Khouribga-Oulmes anticlinorium, 4 – Fourhal-Telt synclinorium, 5 – Kasbat-Tadla-Azrou anticlinorium; lithologic map of the study area (c)](source: fig. b [44], fig. c [37, 43, 47])
The Zaer granite massif consists essentially of two granite units [43, 47] (Fig. 2c): (i) the external unit occupies the northwestern and southern part of the granite formed mainly of biotite granodiorite and (ii) the internal unit formed by leucogranite with two micas. According to the radiometric ages (Rb-Sr) obtained on the main granite facies, the emplacement of the Zaer granite ranges between the Westphal-Stephanian (303 Ma ±13 Ma) and the Autunian (279 Ma ±11 Ma) [38, 48].

3. Materials and Methods

3.1. Description of Data

Landsat 8 was released in 2013, is one of the latest generations of the Landsat series of satellites under the collaboration with the United States Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) [49, 50]. It carries two sensors: operational land imager (OLI) and thermal infrared sensor (TIRS). On the one hand, nine spectral bands define the OLI, including the visible (VIS), the near infrared (NIR), the short-wave infrared (SWIR) and the panchromatic band. On the other hand, the TIRS having two spectral bands, each characterized by 100 m in terms of spatial resolution (Table 1) [49, 51]. Landsat 8 OLI has been used in several works for lineament extraction [3, 26, 52].

<table>
<thead>
<tr>
<th>Bands</th>
<th>Spectral range [μm]</th>
<th>Resolution [m]</th>
<th>Band number</th>
<th>Spectrometer</th>
<th>Spectral range [μm]</th>
<th>Resolution [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Coastal aerosol</td>
<td>0.43–0.45</td>
<td>30</td>
<td>1</td>
<td>VNIR</td>
<td>0.52–0.60</td>
<td>15</td>
</tr>
<tr>
<td>2. Blue</td>
<td>0.45–0.51</td>
<td>30</td>
<td>2</td>
<td></td>
<td>0.63–0.69</td>
<td></td>
</tr>
<tr>
<td>3. Green</td>
<td>0.53–0.59</td>
<td>30</td>
<td>3</td>
<td></td>
<td>0.78–0.86</td>
<td></td>
</tr>
<tr>
<td>4. Red</td>
<td>0.64–0.67</td>
<td>30</td>
<td>4</td>
<td></td>
<td>1.600–1.700</td>
<td></td>
</tr>
<tr>
<td>5. NIR</td>
<td>0.85–0.88</td>
<td>30</td>
<td>5</td>
<td></td>
<td>2.145–2.185</td>
<td></td>
</tr>
<tr>
<td>6. SWIR1</td>
<td>1.57–1.65</td>
<td>30</td>
<td>6</td>
<td></td>
<td>2.185–2.225</td>
<td></td>
</tr>
<tr>
<td>7. SWIR2</td>
<td>2.11–2.29</td>
<td>30</td>
<td>7</td>
<td></td>
<td>2.235–2.285</td>
<td></td>
</tr>
<tr>
<td>8. Panchromatic</td>
<td>0.50–0.68</td>
<td>15</td>
<td>8</td>
<td></td>
<td>2.295–2.365</td>
<td></td>
</tr>
<tr>
<td>9. SWIR/Cirrus</td>
<td>1.36–1.38</td>
<td>30</td>
<td>9</td>
<td></td>
<td>2.360–2.430</td>
<td></td>
</tr>
<tr>
<td>10. TIRS 1</td>
<td>10.60–11.19</td>
<td>100</td>
<td>10</td>
<td>TIR</td>
<td>8.125–8.475</td>
<td>90</td>
</tr>
<tr>
<td>11. TIRS 2</td>
<td>11.50–12.51</td>
<td>100</td>
<td>11</td>
<td></td>
<td>8.475–8.825</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td>8.925–9.275</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td>10.25–10.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td>10.95–11.65</td>
<td></td>
</tr>
</tbody>
</table>

The advanced spaceborne thermal emission and reflection radiometer, known as ASTER, is a multispectral image. The Ministry of Economy, Trade and Industry (METI) of Japan developed this multispectral sensor. Subsequently, NASA took over responsibility for its operation [53–55]. The Terra platform saw the launch of ASTER in December 1999 [56–58]. ASTER covers 14 bands including [53, 59–63]
(Table 1): (i) three bands in the visible and near infrared (VNIR) with a spatial resolution of 15 m; (ii) six bands in the short-wave infrared (SWIR) are characterized by a spatial resolution of 30 m, and (iii) five bands in the thermal infrared (TIRS) through a spatial resolution of 90 m. Additionally, geological mapping and mineral exploration have made extensive use of the ASTER sensor [2, 64–67].

The Copernicus space program includes the Sentinel satellites, which are operated by the European Space Agency (ESA) [68]. The latter has developed several satellite missions with different aspects of Earth observation [69]. Sentinel 2 and Sentinel 1 are two satellite images acquired respectively by the optical and SAR (synthetic aperture radar) systems [70]. In order to meet revisit and coverage requirements, each Sentinel mission relies on a constellation of two satellites [71]. June 2015 saw the launch of the Sentinel 2A sensor [72]. It contains 13 spectral bands using various spatial resolutions (10 m, 20 m and 60 m) [70, 73, 74]. The Sentinel 1A radar, which was launched in 2014, includes a C-band SAR instrument that offers various data acquisition modes. The main acquisition mode for land is called interferometric wide (IW) swath mode [75]. This mode allows the combination of a broad width of 250 km and a large spatial surface (5 × 20 m) [75]. Table 2 summarizes the characteristics of these satellites. Sentinel 2A and Sentinel 1A products have been widely used for several geological applications [76, 77], especially for mapping lineaments [21, 78].

Table 2. Characteristics of Sentinel 2A and Sentinel 1A sensors

<table>
<thead>
<tr>
<th>Bands</th>
<th>Sentinel 2A Spectral range [μm]</th>
<th>Resolution [m]</th>
<th>Sentinel 1A SAR frequency [GHz]</th>
<th>Imaging mode</th>
<th>Swath [km]</th>
<th>Resolution Gr × Az [m]</th>
<th>Polarization</th>
<th>Data product</th>
<th>Ground Range Distance (GRD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Coastal aerosol</td>
<td>0.433–0.453</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Blue</td>
<td>0.458–0.523</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Green</td>
<td>0.543–0.578</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Red</td>
<td>0.650–0.680</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Red Edge 1</td>
<td>0.698–0.713</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Red Edge 2</td>
<td>0.733–0.748</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Red Edge 3</td>
<td>0.773–0.793</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. NIR</td>
<td>0.785–0.900</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8A. NIR narrow</td>
<td>0.855–0.875</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Water vapour</td>
<td>0.935–0.955</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. SWIR/Cirrus</td>
<td>1.360–1.390</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. SWIR 1</td>
<td>1.566–1.655</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. SWIR 2</td>
<td>2.100–2.280</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In order to confirm the accuracy of lineament extraction, this study was based on the shaded relief maps as well as the slope map. These maps are produced from the ASTER GDEM (global digital elevation model). The latter was extracted from the ASTER sensor. On June 29, 2009, GDEM was released jointly with NASA and METI, as part of the Global Earth Observing System contribution [79]. ASTER GDEM is
the most recent digital topographic dataset, covering the global surface of the earth with 30 m in terms of spatial resolution [53]. Besides, ASTER GDEM has been widely used in many studies to verify geological lineaments [21, 80, 81]. In addition, this work also relied on the faults extracted from the geological maps (Ezzihiliga and Ait Ammar; 1:50,000), on the faults derived from the facies map of the Zaer pluton by [82] (1:20,000) and on the results of the field survey.

3.2. Pre-processing

The pre-processing step is important before the processing of optical and radar remote sensing images. The main pre-processing and processing steps are shown in the flowchart (Fig. 3).

![Methodological flowchart of this study](image-url)
The Landsat 8 image used corresponds to level 1T (corrected terrain), acquired on October 7, 2017. It is already geometrically corrected by applying the World Geodetic System 1984 (WGS84) datum and the Universal Transverse Mercator (UTM) projection [83]. The pre-processing step includes radiometric calibration and atmospheric correction. First, a radiometric calibration was applied in order to transform the digital numbers into values reflected by the surface. Afterward, the FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes) module was performed to correct the atmosphere [3, 84].

Concerning the ASTER image, obtained on November 8, 2005, at level 1T (precision terrain corrected registered at-sensor radiance). It comes with the WGS84 world datum and Universal Transverse Mercator (UTM). In addition, this level is also radiometrically calibrated [85]. Thereafter, with the same atmospheric correction method used in the Landsat data, the atmospheric correction was implemented using the FLAASH module [86].

The VNIR and SWIR bands of the OLI and ASTER images were resampled in this study with a spatial resolution of 15 m using the Gram–Schmidt pansharpening method. The panchromatic band of the OLI sensor was applied to generate data with a high spatial resolution of 15 m [87]. The Gram–Schmidt method invented by [88] has emerged as one of the most widely used algorithms for pansharpening of multispectral images [89]. It is based on merging a panchromatic image characterized by higher spatial resolution with a set of spectral bands with lower spatial resolution [88]. The Gram–Schmidt method is widely used in many remote sensing researches [90, 91].

For the Sentinel 2A image, acquired on July 5, 2020, distributed at level 2A (bottom of atmosphere corrected reflectance). These data have been radiometrically calibrated and geometrically corrected [92] using the same global datum and projection as the data from Landsat 8 and ASTER. Furthermore, this product is atmospherically corrected by the European Space Agency (ESA) [92–94]. Thereafter, a spatial resolution of 10 m was used to resample the spectral bands.

With regard to the Sentinel 1A radar image, it was obtained on July 14, 2018, at level 1 GRD (ground range detected). The pre-processing workflow consists of three steps. First, the radiometric calibration procedure was used to transform the digital pixel values into backscatter values reflected from the surface [90, 95]. Second, “Lee” speckle filtering was used to increase image quality by reducing speckle noise [12, 95]. Finally, with the use of the range Doppler terrain correction technique for the correction of the geolocation accuracy of the imagery and transformed into geographical coordinates (latitude/longitude, WGS84) [96] from the image of the Shuttle Radar Topography Mission (SRTM) with a spatial resolution of 90 m [68, 95]. After the pre-processing step, the spatial resolution of the Sentinel 1A image is 10 m.

In order to unify the same global geodetic system and the same projection of satellite images and geological maps. All satellite images were georeferenced using the Lambert conformal conic projection; North Morocco zone, adopted in Morocco (spheroid: Clarke 1880, datum: Merchich).
3.3. Processing

In this study, the processing step initially focused on the use of Sobel filters on the first Principal Component of the optical images and on the VH as well as VV polarizations of the radar image. Subsequently, the line module algorithm was applied to the filtered images in order to extract the geological lineaments.

Principal Component Analysis

Principal component analysis (PCA) is a statistical technique commonly employed in geological research [26, 97, 98], particularly for mineral exploration and geological mapping [90]. This technique consists of selecting uncorrelated linear combinations of variables [99, 100] in order to create new bands called principal components (PC) from the information contained in the spectral bands [91, 101], so that each component extracts successive linear combinations in decreasing order of variance [99, 100]. The first PCA band (Fig. 4) contains high data compared to the second band, and so on; because they include very little data, the latest PCA bands seem noisy [62, 102].

Fig. 4. PC1 of the OLI (a), ASTER (b), and Sentinel 2A (c) sensors, in addition to the VH (d) and VV (e) polarizations of the Sentinel 1A radar
Walsh and Mynar [103] evaluated the effectiveness of five different improvement techniques to identify lineaments which are the mean value of all bands, principal component analysis (PCA), band ratio (BR), histogram equalization and high-pass digital filtering. Based on this comparison, the results demonstrated that PCA is more effective for lineament mapping. PCA has been used in many studies for the determination of lineaments [28, 98, 104]. The directional filtering technique was applied to the PC1 extracted from each optical image. Generally, the PC1 was used because it contains the maximum of information and is characterized by a well-observed relief [9, 105].

Directional Filtering

Directional filtering is a technique that enhances the linear features that are to be identified in particular directions and edge enhancement in images [15, 52]. This technique is widely used to detect geological lineaments (faults and fractures) [106]. Therefore, the application of directional filters remains the best way to identify structural lineaments [21]. In this study, directional filters were used to apply to the first principal component as well as the VH and VV polarizations using the following four main directions: N-S, NE-SW, E-W and NW-SE with a 7×7 kernel matrix (Table 3). Figure 5 shows an example of directional filters derived from the VH polarization of the Sentinel 1A image.

| Table 3. Four main directional filters with 7×7 kernel matrix |
|---|---|
| **N-S** | **NE-SW** |
| 1 | 1 | 1 | 2 | 1 | 1 | 1 |
| 1 | 1 | 2 | 3 | 2 | 1 | 1 |
| 1 | 2 | 3 | 4 | 3 | 2 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| -1 | -2 | -3 | -4 | -3 | -2 | -1 |
| -1 | -1 | -2 | -3 | -2 | -1 | -1 |
| -1 | -1 | -1 | -2 | -1 | -1 | -1 |
| E-W | NW-SE |
| -1 | -1 | -1 | 0 | 1 | 1 | 1 |
| -1 | -2 | 0 | 2 | 1 | 1 | 1 |
| -1 | -2 | -3 | 0 | 3 | 2 | 1 |
| -1 | -2 | -3 | 0 | 3 | 2 | 1 |
| -1 | -1 | -2 | 0 | 2 | 1 | 1 |
| -1 | -1 | -1 | 0 | 1 | 1 | 1 |
| -1 | -1 | -1 | 0 | 1 | 1 | 1 |
Fig. 5. Filtered images derived from the VH polarization of the Sentinel 1A sensor in the four main directions: a) N-S; b) NE-SW; c) E-W; d) NW-SE
Lineament Extraction

The automatic extraction in this study was carried out using the line module algorithm of the PCI Geomatica software. This algorithm consisted of two essential steps, namely edge detection followed by line detection, each step is characterized by a set of parameters [20, 80]. Table 4 describes these parameters in detail.

The automatic lineament extraction in this work was achieved by testing different parameters of optical and radar datasets. Table 5 represents the parameters used in the line module of the PCI Geomatica software to obtain the ideal parameters. These parameters were established taking into account the visual interpretation.

Table 4. Various parameters of the line module

<table>
<thead>
<tr>
<th>Step</th>
<th>Parameter</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge detection</td>
<td>RADI (filter radius)</td>
<td>pixel</td>
<td>It specifies the radius of the filter applied for edge detection, whose values should be between 3 and 8, a higher value tends to include more noise</td>
</tr>
<tr>
<td></td>
<td>GTHR (edge gradient threshold)</td>
<td>unitless</td>
<td>It defines the minimum threshold of the gradient level to detect contours. Values between 10 and 70 give good results</td>
</tr>
<tr>
<td>Line detection</td>
<td>LTHR (curve length threshold)</td>
<td>pixel</td>
<td>The minimum length of a curve that can be considered a lineament, values between 10 and 50 are desirable</td>
</tr>
<tr>
<td></td>
<td>FTHR (line fitting threshold)</td>
<td>pixel</td>
<td>It indicates the biggest error that can occur when adjusting the line segment to create a lineament, ideal values range from 2 to 5</td>
</tr>
<tr>
<td></td>
<td>ATHR (angular difference threshold)</td>
<td>degrees</td>
<td>It is used to specify the largest angle that can be formed between two lineaments to be joined. Values ranging from 3 to 20 are acceptable</td>
</tr>
<tr>
<td></td>
<td>DTHR (linking distance threshold)</td>
<td>pixel</td>
<td>It presents the smallest distance necessary to connect two lineaments. 10 to 45 is a reasonable range for gradient values</td>
</tr>
</tbody>
</table>

Table 5. Values applied to line module parameters to automatically extract lineaments

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Applicable values</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADI</td>
<td>8</td>
</tr>
<tr>
<td>GTHR</td>
<td>50</td>
</tr>
<tr>
<td>LTHR</td>
<td>10</td>
</tr>
<tr>
<td>FTHR</td>
<td>3</td>
</tr>
<tr>
<td>ATHR</td>
<td>20</td>
</tr>
<tr>
<td>DTHR</td>
<td>20</td>
</tr>
</tbody>
</table>
4. Validation

Validation is one of the most significant steps in lineament extraction. To verify the results obtained from the study area, the extracted lineaments were first compared to the shaded relief maps and the slope map produced from the GDEM. In addition, these lineaments were compared to pre-existing faults in geological maps and also to field investigation.

4.1. Validation Using Shaded Relief Maps

Shaded relief maps are visual representations of the terrain [19, 107], derived from global digital elevation model (GDEM) data [108]. Thus, lineaments may exist where there are limits between shaded and unshaded zones [27]. A shaded relief map is produced by changing the virtual azimuth and elevation of the sun [19]. After a comparison of the different sun position angles, azimuths 0, 45, 90 and 135 were chosen because they are best exposed in shaded and unshaded areas [19]. It is characterized by an elevation angle of 45 degrees showing the altitude of the sun above the horizon [27].

4.2. Validation Using the Slope Map

The slope map is a product also derived from GDEM data [109, 110]. It is an important parameter which is widely used to validate the extraction of lineaments. In general, abrupt variations in slope values are frequently associated with the existence of linear structures [13, 111–114].

4.3. Validation Using Pre-existing Major Faults and Field Survey

In this work, a comparison of the extracted lineaments was made with the pre-existing major faults in the geological maps and the facies map of the Zaer pluton. In addition, several locations of structural lineaments in the work area were selected to validate the results obtained by the automatic lineament extraction.

5. Results and Discussion

Pre-processing of optical and radar images plays an important role in reducing errors associated with data acquisition, such as atmospheric and cloud cover effects, which improves the visibility of linear features during the processing step in order to obtain a more detailed mapping [115]. For the optical images, the extracted lineaments were carried out on the directional filters of Sobel applied on the first principal component for each sensor. For the radar image, lineament extraction was performed on Sobel directional filters applied directly to the VH and VV polarizations. Therefore, the automatic extraction procedure was applied with the PCI Geomatica software, using the line module algorithm. This algorithm depends on the detection of edge and line, which is characterized by its speed and reliability in the results obtained [116].

In recent years, shaded relief and slope maps have been considered a reference source for lineament validation. In addition, the lineaments obtained from the
automatic extraction were superimposed on the shading and slope maps to check the correspondence with the illumination areas and abrupt changes in slope, respectively. Lineaments obtained from OLI, ASTER, and Sentinel 2A show much less correlation with shading and abrupt changes in slope. Generally, the lineaments are also found in the regions with no change in values (low values) (Figs. 6, 7).

Fig. 6. Superposition of lineaments resulting from optical images OLI (a), ASTER (b), and Sentinel 2A (c) on the N0° shaded relief map
On the other hand, the results show that the majority of lineaments derived from the VH and VV polarizations are mainly found along the boundary of the shaded and unshaded areas (Fig. 8), as well as in the regions where the slope values change abruptly (Fig. 9). Thus, this explains why radar data is more sensitive to geomorphology than optical data [21, 80].

Fig. 7. Superposition of lineaments extracted from optical images OLI (a), ASTER (b), and Sentinel 2A (c) on the slope map
Fig. 8. Superposition of lineaments extracted from the VH (a) and VV (b) polarizations of Sentinel 1A on the N0° shaded relief map.

Fig. 9. Superposition of lineaments extracted from VH (a) and VV (b) polarizations (Sentinel 1A) on the slope map.
In the present study, the superposition was used to analyze the distribution between the lineaments taken through the satellite imagery and the faults extracted from the geological maps related to the study area. The results of the analysis revealed that the concentration of lineaments in OLI, ASTER, and Sentinel 2A images are mostly randomly concentrated throughout the study area (Figs. 10, 12a–c).

![Fig. 10. Superposition of the lineaments obtained from the optical images of OLI (a), ASTER (b), and Sentinel 2A (c) on the major faults extracted from the geological maps (1:50,000)](image-url)
In contrast, the lineaments derived from the VH and VV images indicate a good correlation with the faults (Figs. 11, 12d, e). Consequently, the radar image (VH and VV polarizations) gives more effective lineaments where there are steep slopes, shadow areas and rough terrain. Moreover, radar sensors depend essentially on the surface topography [117] which confirms the greater sensitivity of Sentinel 1 radar data to geomorphology than optical data.

![Fig. 11. Superposition of lineaments obtained by VH (a) and VV (b) polarizations (Sentinel 1A) on the major faults extracted from geological maps of the study area 1:50,000](image)

The results obtained were used for structural analysis to understand the spatial distribution of lineaments in the working area. This task is based on three processes including length, density, and orientation. Moreover, these results can be used to compare the trends of the lineaments obtained from the VH and VV polarizations with the trends of the global and regional tectonic movements.
5.1. Lineament Analysis

Lineament Length

Statistical lineament analysis (Fig. 13) showed that the numbers of lineaments resulting from the optical images are 2607, 2086 and 5997 of OLI, ASTER, and Sentinel 2A, respectively. Moreover, the VH and VV polarizations represent respectively 3177 and 2961 lineaments. Based on the length histograms, it can be noted that the most dominant lengths are between 200 m and 300 m for OLI and ASTER as well as between 100 m and 200 m for Sentinel 2A, VH and VV. Regarding the lineament values, the length varies between 30 m and 999 m for OLI. Also, the values associated with the ASTER image range from 30 m to 999 m. Values between 20 m and 982 m correspond to Sentinel 2A. The lengths of Sentinel 1A lineaments vary between 18 m and 944 m for VH and between 18 m and 995 m for VV. Moreover, the difference in results is explained by the distinct nature of each sensor.

Fig. 12. Superposition of the lineaments obtained from the OLI (a), ASTER (b), and Sentinel 2A (c) images, in addition to the VH (d) and VV (e) polarizations on the major faults extracted from the facies map of the Zaer pluton (1:20,000)
Fig. 13. Distribution histograms showing the number of lineaments as a function of length in the different satellite images of OLI (a), ASTER (b), and Sentinel 2A (c), in addition to VH (d) and VV (e) polarizations of Sentinel 1A.
Lineament Density

Lineament density is an important tool widely used in spatial analysis [12, 118]. It is determined from the frequency of lineaments calculated per unit area (number of lineaments per square kilometer) [2, 20, 119]. In the study area, lineament density maps were produced to discover the correlation between the distribution of pre-existing faults and the concentration of lineaments. Concerning the Sentinel 1A sensor, the VH and VV images provide a dense network of lineaments in the zones associated with the faults, which are located in areas with significant geomorphology (Fig. 14d, e). Generally, the OLI, ASTER, and Sentinel 2A images show an abundance of lineaments in the granite and also in the surrounding area of the granite (Fig. 14a–c). Moreover, the high values of the optical images randomly cover most of the study area. The evaluation of the results obtained by different satellite images confirms that the Sentinel 1A radar data are the best correlated with pre-existing faults. This also proves the results obtained by the shaded relief maps and the slope map.

Fig. 14. Lineament density maps extracted from optical images of OLI (a), ASTER (b), and Sentinel 2A (c), in addition to VH (d) and VV (e) polarizations of Sentinel 1A
Lineament Orientation

The orientation of the lineament facilitates the determination of the main frequencies of the study area. Lineaments are usually grouped by an angular spacing of 10° [20]. The directions of the lineaments obtained can be compared to the directions related to existing faults in the studied area (Fig. 15). The resulting rose diagram indicates that the lineaments derived from the OLI and ASTER data presented a dominance of the NE-SW to ENE-WSW and E-W systems (Fig. 15a, b). Systems oriented N-S, NE-SW, E-W and NW-SE were well detected in the Sentinel 2A data (Fig. 15c). The main lineaments provided by the radar data are oriented NE-SW and NW-SE to NNW-SSE respectively for the VH and VV polarizations (Fig. 15d, e). Therefore, the orientations obtained by the radar image indicate a similarity with the orientations of the pre-existing faults (Fig. 15d–g).

Fig. 15. Rose diagrams showing the main orientations of lineaments obtained from OLI (a), ASTER (b), Sentinel 2A (c), in addition to VH (d) and VV (e) polarizations; faults orientations extracted from the geological maps (1:50,000) (f) and from the facies map (1:20,000) (g) of the study area.
5.2. Field Investigation

The results obtained through the various optical images (OLI, ASTER, and Sentinel 2A) as well as the radar data (VH and VV polarizations) indicate that the radar image is more accurate in the process of extracting of geological lineaments. Therefore, the combination of lineaments derived from the polarizations of VH and VV gives more accurate results (Fig. 16a). These interpretations relied on visual comparison of results with field investigation and existing data. In this study, several sites were chosen in the field for the validation of the results obtained from the radar image (VH and VV polarizations) (Fig. 16).

![Field Investigation Diagram](image)

Fig. 16. Location of the field photographs on the lineament map obtained by the combination of the extracted lineaments of the VH and VV polarizations, with the extracted lineaments (in black) and the validated lineaments (in red) (a) and zoom on lineaments verified in the field (b)

Figure 17 provides a visual representation of the validated lineament observed in the field.
Fig. 17. Field photographs show some examples of lineament verified in the study area (see Figure 16 for location 1–4): E-W oriented fault (a) with striations in the fault mirror (b); sets of NE-SW oriented parallel faults in biotite granodiorite (c); NW-SE oriented fault (d) with slip faces (striations) (e); NW-SE oriented quartz veins (f)
Moreover, Figure 17 also shows the main aspects and characteristics of the lineament, helping in its overall understanding. The selection of these sites was mainly based on their accessibility. In addition, the field investigation strongly supports the other validation parameters (shaded relief maps, slope map and pre-existing faults). The faults in the working area are marked by the existence of striation on the fault surfaces. Striations are formed on fault surfaces by friction between two solids [120, 121]. These striations are considered a robust indicator for fault identification [122] as well as for determining fault slip direction [120, 123]. For the fractures examined in this study, it appears that most of them are oriented NE-SW and NW-SE with striations on fault surfaces in some places (Fig. 17).

5.3. Relationship between Lineament Directions and Tectonic Movement Directions

In Morocco, Variscan deformation began in the Late Devonian and continued until the Late Carboniferous. In general, three main phases have been distinguished in the realization of the Variscan deformation [36]: (i) the Late Devonian phase or Eovariscan phase, well developed in the eastern areas of the Moroccan Meseta and in the allochthonous alpine domains of the Rif; (ii) the Visean phase restricted to the boundary between the east and west of the Moroccan Meseta. Therefore, the two previous phases of compression were contemporaneous with the development of transtensive sedimentary basins that extended between the Late Devonian and the Early Carboniferous and (iii) the Late Carboniferous phase, during this period the entire Variscan domain, which includes the Western Moroccan Meseta and the Anti-Atlas, was affected by regional shortening.

According to the results obtained from the final lineament map, the Zaer massif and its surroundings mainly present two fracture systems oriented NE-SW and NW-SE to NNW-SSE. Furthermore, the Late Carboniferous deformation field of the Western Moroccan Meseta plutons, including the Zaer granitic pluton, is distinguished by a NW-SE shortening and a NE-SW horizontal stretching associated with the movement of strike-slips oriented essentially dextral ENE [124, 125]. This deformation field is part of the global tectonic regime associated with continental convergence movement. In addition, this era was marked by the westward displacement of Africa during the Late Carboniferous [124, 126].

The granite massif of Zaer presents a distribution parallel to the NE-SW faults. It is similar to the distribution of other Late Carboniferous granitic plutons from Western Moroccan Meseta, which indicate alignments parallel to NE-SW and ENE-WSW faults. These faults correspond to those inherited from the Proterozoic basement. Subsequently, these faults were reactivated during the Variscan orogeny [125, 127]. The NW-SE to NNW-SSE system is well expressed in different parts of central Morocco, including the Zaer granite and its surroundings. This direction is related to the replays of the submeridian faults of the Precambrian basement [128, 129].
6. Conclusion

The objective of this work was to compare the datasets of the optical sensors of Landsat 8, ASTER, Sentinel 2 as well as the radar sensor of Sentinel 1 in the automatic extraction of lineaments. The Sentinel 1 sensor gives greater accuracy than optical sensors, according to a comparison of the results obtained which included the shaded relief maps, the slope map, the correlation with the pre-existing faults in the geological maps as well as the field survey. The performance of radar data can be attributed to the high sensitivity of geomorphology compared to optical data which is affected by soil occupation. The methodology adopted generally depends on the availability of a set of techniques (principal component analysis and directional spatial filters) that have been applied to improve the image quality for automatic lineament extraction and analysis. Thus, the methodological approach used in the present study showed high efficiency in automatic lineament extraction, which can be applied quickly and inexpensively to extract geological lineaments in other similar areas. Lineament mapping is an important part of any structural geological study. In automatic lineament extraction, the accuracy and quality of the extracted lineaments not only depend on the input parameters of the PCI software, but also on the resolution of the satellite images. Therefore, the resolution of satellite images can have a strong influence on the accuracy and reliability of the extracted lineaments. Moreover, the results of this study confirm that the radar image will be very useful in mining and hydrogeological exploration.

Declaration of Competing Interest

The authors certify that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Acknowledgements

The authors would like to thank the editors and anonymous reviewers for their valuable comments and constructive suggestions for this article. The Faculty of Sciences Ben M’sick, Hassan II University of Casablanca provided logistical support for the fieldwork.

References

Mapping and Assessment of Geological Lineaments...

