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Abstract: The understanding of the spatial and temporal dynamics of farmland processes 
is essential to ensure the proper crop monitoring and early decision making 
needed to support efficient resource management in agriculture. By creating 
appropriate crop management strategies, one can increase harvest efficiency 
while reducing costs, waste, chemical spraying, and inhibiting the impact of 
biotic and abiotic factors on crop stress. Only reliable spatial information makes 
it possible to comprehend the influence of various factors on the environment. 
The main objective of the research presented in the paper was to assess the 
possibility of using maps of vegetation and soil indices, such as NDVI, SAVI, 
IRECI, CIred-edge, PSRI and HMSSI, calculated on the basis of images from the 
Sentinel-2 satellite, to qualitatively determine the increased amount of heavy 
metals in the soil in the areas of small agricultural plots around the Barania 
Góra nature reserve in Poland.

 The conducted pilot project shows that the spectral indices: NDVI, SAVI, IRECI, 
CIred-edge, PSRI, and HMSSI, calculated on the basis of images from Sentinel-2, 
have the potential to assess the content of nickel zinc, chromium and cobalt in 
the soil on agricultural plots. However, the confirmation of the obtained results 
requires continuation of the research.
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1. Introduction

The soil is one of the key components of ecosystems and vital to ensure the prop-
er existence of humans and animals. As an area of agricultural production, the soil 
is constantly exposed to human activity, which translates into soil degradation, pol-
lution with heavy metals, erosion, and salinity. Soil is a basic and non-renewable 
element of the natural environment [1]. Many scientific papers have emphasized the 
importance of soil protection against degradation, both within individual countries 
and throughout the EU [1–3]. Heavy metals and petroleum hydrocarbons are the 
most common soil contaminants. Heavy metals that enter the biosphere are not sub-
ject to degradation processes, which is particularly dangerous due to the successive 
accumulation of their content over time, their toxicity, and their easy assimilation by 
plants. The harmfulness of excessive heavy metals content is a common feature in 
the context of their impact on the environment and humans, therefore it is import-
ant to study the presence of heavy metals in various biological systems [4]. A high 
content of lead (Pb) in the soil negatively affects the growth and quantity of crops. 
In turn, cadmium (Cd), as one of the most phytotoxic heavy metals absorbed by 
vegetables due to its fat solubility, may pose a serious threat to human health [5, 6]. 
Copper (Cu) and zinc (Zn) in low concentrations are essential micronutrients for 
plants, but their increased content in the soil can be toxic and delays vegetation, and 
even causes the death of most plant species [7]. Only accurate and timely mapping 
of agricultural land can ensure food and economic security [8].

As a result, the uncontrolled accumulation of heavy metals in the soil on agri-
cultural land may lead to environmental contamination or the absorption of heavy 
metals by crops, and thus enter the trophic chain. Moreover, heavy metals can de-
stroy the normal functioning of the soil and cause stress in crops, and additionally 
hinder their vegetation [5, 6]. It should be emphasized that the content of heavy 
metals in soils is regulated by separate standards and only the exceeding of recom-
mended standards adversely affects human health. Because of the rapid physical 
development of young people, their absorption index is higher, which may exac-
erbate the problem of heavy metal accumulation in children, and the effects may 
appear after prolonged exposure to this phenomenon [1]. Many researchers have 
focused their scientific interests on the quantification of heavy metals content with 
the use of various modern techniques and tools in the form of multispectral images 
and machine learning [5, 9–11], which additionally emphasized the importance of 
this issue. In China alone, contaminated land accounts for one-sixth of all cultivated 
soil. Only an understanding of the phenomena causing such a situation allows the 
implementation of remedial measures to improve the quality of agriculture [6].

The main aim of the research presented in the paper was to assess the possi-
bility of using maps of vegetation and soil indices, such as NDVI (Normalized Dif-
ference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), IRECI (Inverted 
Red-Edge Chlorophyll Index), CIred-edge (Chlorophyll Index red-edge), PSRI (Plant 
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Senescence Reflectance Index), and HMSSI (Heavy Metal Stress Sensitive Index), 
calculated from images taken by the Sentinel-2 satellite, to qualitatively determine 
the increased amount of heavy metals in the soil in the areas of small agricultural 
plots around the Barania Góra reserve. An indirect task to be performed in order to 
achieve the goal consisted in analyzing the content of heavy metals in the agricul-
tural areas around the Barania Góra reserve, which is in the vicinity of the Natu-
ra 2000 area with code PLH260010.

2. Literature Review

D’Emilio et al. [1] discusses the research on the concentration of heavy metals 
in the soil and the commonly used NDVI spectral index in southern Italy, an area 
strongly affected by the anthropogenic activity of the oil extraction industry. The 
obtained results indicate the existence of a relationship between the anomalies of 
plant activity and the physicochemical characteristics of the soil. This means that 
a satellite remote sensing technician can find applications for monitoring an area 
subject to a negative external influence. This approach allows to minimize the work-
load and costs associated with traditional field works [1]. Similar conclusions have 
been reached by many researchers [5, 11], who undertook the use of hyperspectral 
imaging to monitor the soil contamination with heavy metals in agricultural areas, in 
order to identify crops potentially threatened with hazardous chemical components. 
On the other hand, Liu et al. [10] investigated the issue of the prediction of soil con-
tamination with heavy metals (Cd, Hg, Pb), using narrow bands of the electromag-
netic radiation spectrum in various ranges and statistical methods, including mul-
tivariate regression, obtaining satisfactory results which are in agreement with the 
results of other scientists. The study of the relationship between the plant phenology 
and the stress, caused by the abiotic factor in the form of heavy metals, additionally 
allows to interpret correctly the response of the plant species under study to the con-
centration of heavy metals in the soil [6]. The reflectivity for electromagnetic waves 
with a wavelength of 450, 550, and 670 nm gives satisfactory results for monitoring 
the concentration of selected heavy metals in plants. A statistically significant cor-
relation between the value of the spectral reflection in the red-edge channel and the 
concentration of heavy metals has been confirmed by a number of studies [12, 13].

Over the last decade or so there has been an increased interest in precision farm-
ing, both at the level of the agricultural community and food consumers. The Europe-
an Union aims to reform the Common Agricultural Policy (CAP) in the coming years. 
The Integrated Management and Control System (IACS) implements development 
payments for farmers in terms of area, using satellite images of high and very high 
resolution. The abundance of free data available under the European Copernicus 
program encourages Member States to implement the IACS, using Sentinel images 
to monitor agricultural parcels [14, 15]. For example, the determination of the type 
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and spatial distribution of crops is key to forecasting national yields. This is import-
ant in the context of determining the amount of food that can be stored in warehous-
es and exported abroad [8]. By creating appropriate crop management strategies, it 
is possible to increase the harvest efficiency while reducing costs, waste, chemical 
spraying and inhibiting the influence of biotic and abiotic factors on the stress of cul-
tivated plants [16, 17]. Heavy metals, apart from being a threat to the environment, 
lower the productivity of plants. The use of phytoremediation technology is one of 
the reclamation techniques for areas affected by contamination with heavy metals 
or the action inhibiting the accumulation of such elements in the soil [7]. However, 
this technology is not always cost effective. Because of the rising demand for food 
and the growing world population, it is necessary to conduct research in order to 
maximize production and minimize the impact of negative external factors on the 
quantity and quality of crops [17]. Growing cereals requires sustainability not only 
in terms of production but also its environmental impact. The very availability of ni-
trogen in soil varies spatially within the cultivated plants and depends on the phys-
icochemical properties of the soil, including its morphology [18].

The potential of remote sensing for plant health monitoring and crop mapping 
has been highlighted in many studies [19–22]. Global warming and the related cli-
mate forecasts indicate an increased probability of droughts, which will put addi-
tional pressure on the water sector and contribute to the build-up of problems in 
agriculture and an increased level of stress on plants. The abiotic groups of stress 
factors, which negatively affect the quality of the soil and the size of crops, apart 
from water deficiency, extreme temperatures, and nutrient deficiency, also include 
an increased content of heavy metals [23]. This may include increased crop stress in 
the monitored areas. Therefore, it is extremely important to monitor the condition 
of crops and develop strategies that will help ensure the safety of both food and 
water [24]. Agricultural decisions can impact the local community in many ways, 
including increased fertilization and exposure to pesticides, one of the sources of 
increased levels of heavy metals in the soil. The use of remote sensing techniques 
to create and update maps of crop and plant growth is the next step in the develop-
ment of precision farming.

Phenological information obtained by means of remote sensing sensors allows 
the study of the growth and state of stress in plants practically all year round. This 
limits the uncertainty of the selection of the spectral response, sensitive to changes 
in the physical parameters of the environment [6]. By the use of remote sensing tech-
niques, it is possible to take into account biotic and abiotic stress factors, and thus 
update the Liebig’s minimum law, assuming that growth factors such as water and 
temperature are optimal, to the current climate situation and technological progress 
in the world [23]. The performance of soil monitoring tasks for large areas and in 
repetitive periods of time is problematic for people involved in soil testing. With the 
use of correlation analyzes between the calculated reflectance value and the content 
of heavy metals in the soil, it is possible to remotely monitor the soil quality [10, 25]. 
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The presence of heavy metals in the soil influences the speed of microbiological 
processes, including decomposition, which is necessary to ensure soil fertility and 
long-term plant productivity. In the study reported by Zhang et al. [26], the spectral 
index IRECI (Inverted Red-Edge Chlorophyll Index) was already examined in terms 
of monitoring the changes in the concentration of heavy metals in large areas sub-
jected to reclamation after an inactive ore mine, giving results that were satisfactory 
for the authors. On the other hand, radar data from Sentinel-1 since 2015 can provide 
useful information for the agricultural sector. Polarized VH / VV radar images are 
consistent with the value of the GAI (Green Area Index) spectral index and the bio-
mass of the crop [14]. This means that radar imaging allows for an additional enrich-
ment of the observation resource for a thorough assessment of the soil quality and 
its relationship with other physicochemical parameters in the analyzed area [27, 28].

An accurate determination of the content of heavy metals in the soil is possible 
due to in situ measurements and analytical methods. These methods have limita-
tions as they are both time- and cost-consuming. Another problem is a spot nature 
of the measurement, usually with a limited spatial density, which in the case of high 
spatial variability of physicochemical parameters makes it practically impossible to 
perform a reliable interpolation. Thus, efforts are being made to create new, indi-
rect techniques for determining the values describing the state of the environment, 
using remote methods, e.g., satellite remote sensing and image spectroscopy. The 
approach of remote sensing, which allows for repeated contactless coverage of rela-
tively large areas with images, has become attractive for the purposes of identifying 
and assessing spatial patterns of physical and biochemical properties of soils [10]. 
These techniques offer the ability to conduct research over a large area, but are sen-
sitive to weather conditions (the presence of cloud cover, excessive humidity), which 
brings about the need for advanced radiometric corrections of such scenes. In the 
literature review, one can find many applications of remote sensing for the analyzis 
of drought phenomena, soil moisture mapping, interpretation of the viability and 
productivity of crops or analyzes of vegetation and soil itself [20, 24, 25, 27]. Many 
satellite programs, such as Landsat, SPOT, Sentinel-1, and Sentinel-2, provide collec-
tions of their images for free. One of the limiting factors in the use of satellite images 
are gaps in the acquired time series, resulting from the low frequency of revisits and 
high cloudiness. The spatial integration of data from several satellites is therefore of 
particular importance for optical sensors, allowing for multi-time analyzes and may 
be a solution to the above-mentioned problem [16, 19].

3. Study Area

The subject of the assessment consisted of the agricultural land located on four 
test sites around the Barania Góra (Sheep Mountain) reserve in the Świętokrzyskie 
voivodship, Poland, situated approximately 16 km north-west of the city of Kielce. 
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The Barania Góra nature reserve was established in 1993 and covers an area of 82 ha. 
It was established to preserve diverse forest communities, including loess ravines, 
and to protect common ivy. The total area of all test sites used in the experiment 
was 3.6 ha. The area around the testing grounds is classified as Natura 2000 habitat 
areas. Currently, there is no impact factor in the form of industrial plants around the 
analyzed areas. The presented areas are used for the cultivation of grain. The exact 
arrangement of the samples is presented in Figure 1 (description of the attached 
location coordinates in EPSG: 2180).

Fig. 1. Location of the test sites around the Barania Góra reserve, Poland

The A (1.6 ha) and C (0.5 ha) test sites are located far from buildings. The test 
site D (1.5 ha) is located in the vicinity of dense development of single-family houses 
and poultry farming. The height differentiation of the experimental test sites reaches 
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almost 110 m in relation to the highest and lowest study area. The average horizontal 
distances between the sampling points range between 700 and 1,600 m. The range 
of the experimental test sites was selected in such a way that the analyzed areas 
differed not only in terms of their area, but also in the contour shape and in their 
surroundings.

There were two main reasons why the authors chose the presented area for 
research. The presented agricultural areas are used for the production of grain as 
a feed ingredient for local farms. The second reason was the assessment of the state 
of the environment in terms of heavy metals content in the close vicinity of the pro-
tected Barania Góra nature reserve, which is within the range of the Natura 2000 
area, code PLH260010 – Suchedniowskie Forests. Over 12 protected species listed 
in the Council Directive 92/43 EEC were found in the area. Combining the above, 
the authors concluded that conducting a pilot research project here would benefit 
the local area. Because of the high activity of agricultural machinery and the use of 
pesticides in the area, researchers assumed that there was a risk of heavy metals 
accumulation in the soil that should be controlled.

4. Research Methodology

4.1. Methodological Overview

Analyzes based on the study of bands of electromagnetic radiation highly cor-
related with the chemical properties of soil are, according to [10], the most funda-
mental analyzes.

Figure 2 presents an overview diagram presenting the research used. The 
whole methodology can be divided into three main parts, i.e., chemical analyzis 
(Section 4.2), analyzes related to the use of multispectral imagery (Section 4.3), and 
statistical analyzes (Section 4.4).

From the saved position, vector files were created in the GIS software which 
comprised the scope of each area. Satellite images recorded by the MSI sensor, were 
downloaded and pre-processed in the software recommended by the ESA, SNAP. 
There was a difference of 4 days between the date when the soil samples were taken 
and the time Sentinel-2 images were taken. No unstable meteorological conditions 
in the form of snowfall or rainfall were observed during this period, and the differ-
ence in daily temperatures recorded in this period did not exceed 3°C. Therefore, 
it was found that ground-based measurements were representative for further an-
alyzes in relation to satellite data, which is consistent with the experience of other 
researchers [29, 30].

Using the previously prepared vector masks, two fragments corresponding to 
the range of three experimental test sites A, C, and D were cut from the Sentinel sat-
ellite images, which were subjected to detailed tests described in section 4.3. Testing 



194 S. Sobura, B. Hejmanowska, M. Widłak, J. Muszyńska

ground B was not subjected to additional analyzes due to the fact that this area 
was covered with clouds when the pictures were taken by the satellite, which had 
a negative impact on the recorded value of the electromagnetic radiation reflection.

4.2. Chemical Analyzes

Samples for laboratory chemical analyzis were taken from the soil with an Eg-
ner’s cane from a depth of 40 cm [31]. The volume of a single soil sample was about 
1.5 dm3. The sampling site coordinates were recorded using the autonomous GNSS 
position available in a mobile device with a situational accuracy of ±2.5 m. Mixed 
and air-dry samples were analyzed. There were 30 to 40 samples taken in the test 
cycle from each test site. The field samples were collected at similar spaces, creating 

Fig. 2. The methodology of the conducted research
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a Z-shape. The particle size distribution was determined by laser diffraction in ac-
cordance with the ISO 14887:2000, using a Mastersizer 3000 [32, 33]. The total con-
tents of metals: Cd, Cu, Co, Cr, Ni, Pb, and Zn was determined using the ICP-AES 
technique after mineralization of the samples with aqua regia in accordance with the 
EN 13346:2000 standard [34]. The measurement accuracy by the ICP-AES technique 
was 0.001 mg/kg. The soil pH in 1MKCl was potentiometrically determined using 
a Mettler Toledo pH meter [35]. The humus was calculated from the organic carbon 
content determined by the Tiurin method [36].

The results of the chemical analyzes were used to validate the spectral indices 
calculated on the basis of multispectral images from Sentinel-2.

4.3. Analyzes of Data from Sentinel-2 Images

The information obtained in situ may be unrepresentative for the entire area, es-
pecially during large-scale studies over a large area [10]. Satellite images allow us to 
analyze even large areas in short time intervals. For the purposes of the experiment, 
the images taken on December 21, 2019, recorded by the Sentinel-2 satellite, were 
used. Images downloaded from the EarthExplorer website [https://earthexplorer.
usgs.gov/] were radiometrically corrected in the SNAP software dedicated to the 
processing of satellite images. The satellite is equipped with an MSI push-broom 
scanner, recording 13 spectral channels with different geometric and spectral resolu-
tion. Table 1 presents the detailed characteristics of the Sentinel-2 channels used [37].

Table 1. Specification of the spectral channels of the Sentinel-2 satellite 

Band number Central wavelength [nm] Bandwidth [nm] Spatial resolution [m]

1: Coastal Aerosol 443.9 27 60

2: Blue 496.6 98 10

3: Green 560.0 45 10

4: Red 664.5 38 10

5: Red-edge 1 703.9 19 20

6: Red-edge 2 740.2 18 20

7: Red-edge 3 782.5 28 20

8: NIR 835.1 145 10

8a: NIR Narrow 864.8 33 20

9: Water Vapor 945.0 26 60

10: SWIR Cirrus 1,373.5 75 60

11: SWIR 1,613.7 143 20

Source: https://sentinels.copernicus.eu/web/sentinel/home

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://sentinels.copernicus.eu/web/sentinel/home
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The downloaded satellite images were at the L1C processing level. Atmospheric 
correction was performed according to the APDA (Atmospheric Precorrected Differ-
ential Absorption) algorithm and the Sen2Cor function, based on the determination 
of the water vapor content from the L1C level images [38]. After radiometric correc-
tion, the images were brought to the level of L2A processing, which were further 
used in the research. Spectral channels with a geometric resolution of 60–20 m were 
resampled to a size of 10 m.

Various spectral indices calculated on the basis of the recorded spectral response 
by the satellite were used in the research. The indices employed can be divided into 
two groups: concerning plant vegetation and soil condition. The work focused on 
the following spectral indices: NDVI, SAVI, IRECI, CIred-edge, PSRI, and HMSSI.

The NDVI index is one of the most recognizable and widely used spectral 
indices in agriculture [39]. It is strongly correlated with the concentration of chlo-
rophyll concentrated in the plant assimilation apparatus and is expressed by equa-
tion (1):

 
ρ −ρ

=
ρ +ρ

NIR RED

NIR RED

NDVI  (1)

where ρNIR are the DN (Digital Number) values, which are a measure of electromag-
netic radiation reflection in the near infrared range, and ρRED are the red reflection 
values of the optical radiation band. The values of the NDVI index range from −1 
to 1, where low values indicate no or poor course of vegetation, and high values of 
the index – increased vegetation.

The spectral SAVI (Soil Adjusted Vegetation Index), calculated with formula (2), 
is a modification of the NDVI index. It allows the influence of soil brightness to be 
taken into account in relation to the surroundings [40]. It is used to assess the condi-
tion of plants at an early stage of vegetation, when the assimilation apparatus is not 
sufficiently developed:

 
ρ −ρ

= ⋅ +
ρ +ρ +

NIR RED

NIR RED

SAVI (1 )L
L

 (2)

where L is the area covered with vegetation. In the discussed research, the value of 
L = 0.5 was used.

The IRECI (Inverted Red-Edge Chlorophyll Index) is calculated on the basis of 
the value of the spectral response from four bands of recorded satellite channels, 
according to formula (3). The use of red and three infrared spectral channels allows 
to estimate the chlorophyll content in plants. The reflection of the red edge in formu-
la (3) is used as an indicator of stress and aging of the vegetation [37].
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ρ −ρ

=
ρ ρ

NIR RED

RED-EDGE 1 RED-EDGE 2

IRECI
/

 (3)

where ρRED-EDGE 1 and ρRED-EDGE 2 are the respective spectral channels of Sentinel-2 from 
Table 1.

Another index related to the content of chlorophyll in plants is the CIred-edge spec-
tral index (Chlorophyll Index red-edge), calculated based on formula (4). The advan-
tage of its use consists in a linear dependence of the index value on the content of 
chlorophyll. Low values of the CIred-edge index may indicate a low content of chloro-
phyll and high plant stress [41]:

 
ρ

= −
ρ

RED-EDGE 3
red-edge

RED-EDGE 1

CI 1  (4)

The PSRI index (Plant Senescence Reflectance Index) – unlike the previously 
presented index – is more sensitive to the ratio of carotenoids to chlorophyll. For 
Sentinel-2 images it is calculated as in formula (5). An increased PSRI value indicates 
an increased stress in plants [26]. PSRI values range from −1 to 1.

 
ρ −ρ

=
ρ
RED BLUE

RED-EDGE 2

PSRI  (5)

The last spectral index tested was the Heavy Metal Stress Sensitive Index 
(HMSSI), proposed by [41], and calculated according to formula (6). It combines 
the advantages of the two previous indices. If the plants exhibit stress, the CIred-edge 
value decreases, while in the same situation the PSRI value increases. As a result, 
the HMSSI indicator is more sensitive to plant stress, which may be reflected in the 
detection of an increased concentration of heavy metals.

 = red-edgeCI
HMSSI

PSRI
 (6)

4.4. Statistical Analyzes

The R2 coefficient of determination was adopted as a measure of the relationship 
between the obtained observations. Liu et al. [10] and Choe et al. [11] have shown that 
it is possible to create a simple mathematical model allowing to link the radiation spec-
trum (in certain ranges of electromagnetic radiation) with the content of heavy metals 
in soil. However, the possibility of creating a mathematical model to monitor the pol-
lution with heavy metals for relatively small agricultural plots, that are not subject-
ed to strong pressure from industrial plants, was not tested. The Pearson correlation 
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coefficient for the collected data was calculated using formula (7). The linear regres-
sion model was calculated using the least squares method for the most highly correlat-
ed spectral indices with the in situ measurements obtained in the research. By squar-
ing the correlation coefficient rxy, the coefficient of determination R2 was obtained:

 =

= =

− −
=

− −

∑

∑ ∑
1

2 2

1 1

( )( )

( ) ( )

n

i i
i

xy n n

i i
i i

x x y y
r

x x y y
 (7)

In the presented studies xi and y are the values of the calculated spectral indices 
and the content of heavy metals in the soil, and x  and y  are average values from the 
samples calculated for the entire range of the testing ground.

5. Results
5.1. Results of Chemical Analyzes

The results of the content of selected heavy metals in the tested samples are 
shown in Table 2 along with the errors in their determination. The last column of Ta-
ble 2 shows the permissible value of heavy metal concentration in agricultural soil in 
Poland [42]. The presented value of the metal concentration is the sum of the metal 
content in all soil fractions. On the other hand, the standard deviation shown in Ta-
ble 2 is related to soil samples from a given test site, which were then averaged, and 
from which the value of the heavy metals analyzed in the study was determined.

Table 2. Results of the concentration of heavy metals from the mixed test  
for the analyzed experimental test sites A, C, and D  

together with their permissible content in the soil for agricultural areas in Poland

Heavy 
metal

Area A (East) Area C (North) Area D (South)
Permissible 

contents of selected 
metals in soil

Metal conc. 
in soil 

[mg/kg]
Std. dev.

Metal conc. 
in soil 

[mg/kg]
Std. dev.

Metal conc. 
in soil 

[mg/kg]
Std. dev. Metal conc. in soil 

[mg/kg]

Cu 10.50 0.04 9.54 0.02 8.68 0.01 200.00

Cr 8.07 0.76 11.65 0.68 7.88 0.36 200.00

Ni 4.40 0.04 6.09 0.03 4.77 0.02 150.00

Pb 54.77 0.18 22.91 0.12 17.72 0.13 200.00

Zn 68.79 0.33 96.94 0.30 58.41 0.36 500.00

Co 2.43 0.05 4.82 0.04 2.77 0.02 50.00

Cd 1.73 0.01 1.31 0.02 0.89 0.01 2.00
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In order to present the differences in the concentrations of heavy metals for the 
three analyzed experimental test sites, bar graphs were created as in Figures 3 and 4. 
Out of the seven analyzed heavy metals, an anomaly was observed in the form of an 
increased cadmium content on the eastern test site (marked with the letter A), i.e., 
87% of the permissible value of the element content in agricultural soils. Phosphorus 
fertilizers are the source of cadmium in agricultural area, which constitute approx-
imately 54%, approximately 5% is sewage used for soil fertilization, and approxi-
mately 41% is usually airborne [43]. The remaining contents of the tested metals in 
all test sites range from 3% to 13% of the standard. The content of heavy metals for 
the analyzed test sites is similar, except for lead, which is shown in Figures 3 and 4. 
However, the total contents of the tested metals do not exceed the applicable stan-
dard for agricultural land, presented in Table 2. Figure 4 shows the reference to the 
standard for cadmium content in agricultural areas in force in Poland.

Fig. 3. The content of heavy metals Cu, Cr, Pb, and Zn in the soil for the analyzed 
experimental sites  

Fig. 4. Content of heavy metals Ni, Co, and Cd in the soil for the analyzed experimental sites 
with reference to the allowable cadmium content in Poland (red line)
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The humus content and the pH level in the soils were checked in the three an-
alyzed areas, A, C, and D soils rich in humus are more resistant to the influence of 
pollutants than low-humus soils [44]. Humus has a large water capacity and is char-
acterized by a very large sorption capacity. Humus compounds increase the buffer 
capacity and regulate the pH of the soil solution [45]. The humus content in soils in 
Poland varies: for poor soils it is 0.1–1%, for poor humus soils – 1.01–2%, for medium 
humus soils – 2.01–4%, for humus soils – over 4% [44]. In the discussed study, each 
of the soils for the three test sites can be classified as a medium humus soil. Detailed 
parameters concerning the mean content of humus and the mean pH value for the 
analyzed test sites are presented in Table 3. The pH values for all the collected sam-
ples were in a range of pH 6.6–7.6, meaning there was no acidic environment in any 
of the test sites.

Table 3. Parameters of pH and humus on the measuring test sites  
around the Barania Góra reserve, Poland

Parameters
Sampling location

Area A (East) Area C (North) Area D (South)

Average pH value 6.6 7.0 7.6

Average humus 
content [%] 3.5 2.7 2.5

5.2. Results of Analyzes Based on Satellite Images

Figure 5 shows the outline of the experimental test sites against a background 
of satellite images. For images on the left only the detector was calibrated, which 
gave the top of atmosphere (TOA) reflectance. A color RGB composition shows 
a characteristic influence of the water vapor. The images on the right are after a full 
radiometric correction and the reflectance has been converted to the bottom of at-
mosphere (BOA). This is initially visible in the improved color of the presented color 
compositions.

The homogeneity of the samples in terms of the registered spectral response 
was tested. Area C turned out to be the test site with the lowest variability of the 
reflectance. Figure 6 presents graphs with spectral curves, after the initial (TOA) and 
full (BOA) radiometric correction for the three analyzed experimental areas. When 
comparing the spectral curves of corresponding test sites in Figure 6a and 6b it is 
possible to notice a significant improvement in radiometry after a full atmospheric 
correction of the images in the visible (VIS) and near infrared (NIR) bands. This 
means that the use of atmospheric correction is important in terms of spatial ana-
lyzes, which is confirmed by the results of studies by other authors [46].
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Representative and commonly used spectral indices were determined: NDVI, 
SAVI, IRECI, CIred-edge, PSRI, and HMSSI. The values of the obtained indices were to check 
the relationship between the selected indices and the content of heavy metals analyzed 
in this study. Figure 7 presents the distribution maps of spectral indices. Figures 7a and 
7b show a different level of vegetation in the selected experimental sites, even though 
each of these areas was not covered with vegetation at the time of soil sampling. The high 
values of the NDVI and SAVI indices in areas A and D can be explained by early agricul-
tural operations in the form of plowing and high ambient temperatures for the winter 
season, favoring plant vegetation and photosynthesis. The level of chlorophyll and the 
CIred-edge index in the studied areas is similar as shown in Figure 7d. The northern test site 
(area C) is less exposed to biotic and abiotic factors, which cause stress to vegetation, as 
indicated by lower PSRI values (Fig. 7e). The HMSSI index calculated on the basis of the 
red-edge CI and PSRI indices did not give satisfactory results, showing a large amount 
of “salt and pepper” noise, without a specific outline of the anomaly area.

Fig. 5. Testing grounds around the Barania Góra reserve, Poland
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Fig. 6. Spectral curves for the analyzed experimental test sites A, C, and D:  
a) before atmospheric correction (TOA);  
b) after atmospheric correction (BOA)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

443 490 560 665 705 740 783 842 865 945 1610 2190

R
efl

ec
ta

n
ce

 T
O

A
 [

d
l]

Wavelenght [µm]

Area A Area C Area D

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

443 490 560 665 705 740 783 842 865 945 1610 2190

R
efl

ec
ta

n
ce

 B
O

A
 [

d
l]

Wavelenght [µM]

Area A Area C Area D

a)

b)



The Application of Remote Sensing Techniques and Spectral Analyzes... 203

Fig. 7. Maps of spatial spectral indices around the tested experimental sites: a) NDVI index; 
b) SAVI index; c) IRECI index; d) CIred-edge index; e) PSRI index; f) HMSSI index

a) b)

c)

e)

d)

f)



204 S. Sobura, B. Hejmanowska, M. Widłak, J. Muszyńska

5.3. Results of Qualitative Analyzes

The obtained values of the six spectral indices (Fig. 7) for the specified test 
sites A, C, and D, were averaged and visualized in Figures 8a and 8b.

Fig. 8. Summary of averaged values of spectral indices for A, C, D experimental sites:  
a) NDVI, SAVI, IRECI, PSRI, CI red-edge; b) HMSSI

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

Area A Area C Area D

In
d

ex
 v

al
u

e

NDVI SAVI IRECI PSRI Cire

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Area A Area C Area D

In
d

ex
 v

al
u

e

HMSSI

a)

b)



R² = 0.0102

R² = 0.9875

R² = 0.9794

R² = 0.996

R² = 0.0045

0

5

10

15

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

M
et

al
 c

o
n

te
n


n

 s
o

il 
[m

g/
kg

]

NDVI 

Cu Cr Ni

Co Cd Linear regression (Cu)

Linear regression (Cr) Linear regression (Ni) Linear regression (Co)

Linear regression (Cd)
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Because of the different domain of the HMSSI spectral index compared to other 
indices analyzed in this paper, its results are shown in a separate chart. Standard 
deviations are marked with a vertical line.

The values of spectral indices for test sites A and D show a similar tendency and 
similar values. Figure 8a shows significantly lower values of individual indices for 
test site C. According to Figure 8b, the HMSSI spectral index indicates an increased 
pressure of heavy metals for area C compared to other areas analyzed in this study. 
However, a high standard deviation for HMSSI values reduces confidence in the 
obtained observations.

In order to check the relationship between the content of heavy metals in the 
soil and the values of individual spectral indices, it was decided to visualize the 
collected results on a dot plot (Fig. 9 on the interleaf). Because of a wide range of 
results, the data are grouped according to high (Pb, Zn) and low (Cu, Cr, Ni, Co, Cd) 
contents of heavy metals. During the qualitative analyzes, the points on the graph 
were searched for in such a way that it would be possible to distinguish areas with 
an increased content of a given heavy metal in relation to other measurement points 
and experimental areas. Among the seven analyzed heavy metals, a clear relation-
ship was observed between nickel (Ni), cobalt (Co), chromium (Cr) and zinc (Zn), 
and the values of all spectral indices included in this study. A small number of ex-
perimental sites (only three research areas for which spectral indices were averaged) 
presented in the pilot study is a compelling argument for the continuation of re-
search in order to confirm the observations.

Some observations may indicate a linear relationship to the calculated spectral 
indices. However, this requires the confirmation of a larger amount of test data. Ta-
ble 3 presents the highest determination coefficients R2 for heavy metals, for which 
a linear relationship was observed with the values of spectral indices.

Table 3. Comparison of selected heavy metals and spectral indices  
with the obtained determination indices R2 in the analyzed experiment

Heavy metal Spectral index R2

Ni

NDVI 0.98

SAVI 0.99

IRECI 0.99

Cire 0.98

PSRI 0.99

HMSSI 0.97
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Heavy metal Spectral index R2

Co

NDVI 0.99

SAVI 0.99

IRECI 0.98

Cire 0.96

PSRI 0.98

HMSSI 0.94

Cr

NDVI 0.96

SAVI 0.96

IRECI 0.90

Cire 0.86

PSRI 0.91

HMSSI 0.83

Zn

NDVI 0.89

SAVI 0.84

IRECI 0.74

Cire 0.68

PSRI 0.75

HMSSI 0.64

6. Discussion

The understanding of the spatial and temporal dynamics of farmland processes 
is essential to ensure proper crop monitoring and early decision making to sup-
port efficient resource management in agriculture. Only reliable spatial information 
provided with a certain repeatability allows the comprehension of the influence 
of various factors on the environment [19]. Remote sensing techniques enable the 

Table 3. cont.
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prediction of soil properties with a high degree of accuracy in the area of physical 
(texture), chemical (pH with an accuracy of more than 90%) and biological proper-
ties (organic carbon over 85%). It should be emphasized that the mentioned param-
eters belong to the groups of soil parameters directly related to the management of 
crops and optimization of agricultural production and the use of remote sensing 
methods allows to improve the speed of decisions made in precision agriculture at 
various levels of the economy [20, 22, 47].

The stage of radiometric correction of the satellite scene, including atmospheric 
correction is an important one in the processing of remote sensing data. Properly 
carried out, it allows us to significantly improve the spectral curves, as can be seen 
in Figures 6a and 6b. This directly translates into the values of calculated spectral 
indices. The limitations of remote sensing technologies for satellite imaging. result-
ing from long revision times or the cloud cover can be eliminated by using commer-
cial satellite constellations (e.g., PlanetScope with 1-day revisits) or by performing 
a flight with unmanned aerial vehicles (UAVs) equipped with a multispectral cam-
era [21]. Thus, the potential of remote sensing in agriculture is great and some of the 
technology determinants are already compensated by other frequently commercial 
solutions. A practical example of the discussed problem is the high cloud cover over 
the western test site (area B shown in Figure 1). which excluded it from further stud-
ies. In the case of having an unmanned UAV with an adapted hyperspectral camera, 
it would be possible to supplement the missing information about the albedo from 
the western region.

Despite many studies on the use of satellite remote sensing to assess the content 
of heavy metals in the soil, there is no single, universal mathematical model allow-
ing such observations to be linked. In the literature review, no paper was found that 
would focus on estimating the possibility of using spectral index maps for qualita-
tive assessment of soil on small agricultural plots which had not been exposed to 
factors of industrial activity in terms of heavy metal content. This means that the 
methodology for the determination of the concentration of heavy metals by indirect 
techniques not only differs depending on the type of cultivation and land manage-
ment but also for the location of the research object and its immediate surroundings. 
Because of the different pace of agrotechnical treatments and the profile of their 
activities in agricultural areas, the level of vegetation development may vary signifi-
cantly. This was reflected in the spectral curves obtained, shown in Figure 6. This is 
also confirmed by the results obtained in the form of maps of spectral indices pre-
sented in Figure 7. Despite the fact that in each analyzed test site there was soil after 
main plowing at a depth of at least 0.5 m, the maps of the NDVI and SAVI indices for 
the three experimental sites differed from each other (Fig. 7a, b).

The change in the spectral signal and the spectral curve due to heavy metals can 
be explained by the reaction of metal binding on the top mineral surface. This means 
that the shape of the spectral curve of the tested sample may alter as a result of chang-
es in the chemical composition, which could additionally explain the differences in 
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the spectral curves of the analyzed test sites in Figure 6b. Melendez-Pastor et al. [25] 
made similar assumptions in their study. They reported about three-dimensional 
properties of soils on the basis of two forms of evidence: reference patterns of spectra 
and geomorphological observations supplemented with the physiological state of 
plants and the soil itself. The range of electromagnetic radiation commonly used in 
agriculture is the near infrared (800–2500 nm) and so-called red edge in a spectral 
range of 680–750 nm. A characteristic feature of the spectral reflection recorded in 
the red and near infrared channel of the electromagnetic radiation spectrum is the 
strong absorption of red radiation by chlorophyll and a specific peak for infrared 
spectral reflection in plants. According to Wang et al. [5], this phenomenon is useful 
to examine the content of heavy metals in plants, because the change in the amount 
of chlorophyll and in the results of phenological observations translates directly 
into plant stress and a change in the spectral curve recorded for the plant under 
study. Such an approach has resulted in the creation of many empirical or semi -
empirical models allowing the monitoring of vegetation growth and accompanying 
stress [6, 11].

Diversified values of spectral indices NDVI, SAVI, IRECI, CIred-edge, PSRI and 
HMSSI may indicate different physicochemical parameters of the soil in the ana-
lyzed experimental areas. Despite the fact that in each area of the experiment there 
was soil (without crops and visible vegetation). the values of spectral indices in the 
area of test site C differ from the others, which can be seen in Figure 8a. On the other 
hand. the HMSSI values indicate that in area C there is an increased risk of heavy 
metal accumulation in relation to the other test sites A and D (Fig. 8b). It was decided 
to check this by comparing the concentrations of the analyzed heavy metals against 
individual spectral indices. as shown in Figure 9. Thus, a model was sought that 
would help to monitor qualitatively the areas in terms of the content of heavy metals 
in the soil. Based on the dot plots in Figure 9 a clear relationship was observed for 
all the spectral indices analyzed in the study with the content of zinc (Zn), chromi-
um (Cr), nickel (Ni), and cobalt (Co). Figures 9a and 9e allow to group areas A and 
D as test sites with a lower chromium content relative to the C test site, where the 
chromium content from in situ measurements was the highest (Tab. 2, Fig. 3).

For the measurement points created in the graphs of Figure 9, the functions 
were fitted with a linear regression method. Based on the obtained results, the deter-
mination index R2 was calculated. The best match of the data was obtained for heavy 
metals nickel and cobalt, as shown in Table 3. Slightly lower R2 values were obtained 
for zinc and chromium, where there is still a linear relationship R2 > 0.80. Because 
of the small number of observations, the creation of advanced mathematical models 
allowing for remote monitoring of heavy metals in the nearby areas of the Barania 
Góra reserve was abandoned. This will be the subject of further research.

The main issue which determines the successful use of remote sensing tech-
niques and spectral analyzes to determine the content of heavy metals in the soil is 
the optimal selection of the electromagnetic radiation band and the knowledge of 
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agrotechnical procedures carried out in the studied areas. In the world literature, 
there are papers that discuss the problems of forecasting the content of heavy metals 
in the soil based on remote sensing techniques using the reflectance factor [11, 25]. 
Nevertheless. there are many factors affecting the reflection coefficient values to be 
analyzed, including the applied agrotechnical measures, the application of fertil-
izers, and the surroundings of the studied area. The large number of the above -
-mentioned factors means that research on many levels and searching for relation-
ships between various environmental parameters in a specific area of experimental 
test sites is required and this will be the subject of further experiments.

7. Summary and Conclusions

The procedure presented in the research shows a qualitative approach to car-
rying out tasks in the field of determining heavy metal concentrations in soil based 
on multispectral images from Sentinel-2, allowing us to identify areas with a poten-
tially high risk of contamination with heavy metals. Conventional methods, usually 
consisting of taking single samples and analyzing the collected material in a labora-
tory, are laborious and time-consuming and do not provide full spatial information 
about the distribution of the parameter under study.

As part of the research, it was possible to achieve the goals set out in the intro-
duction. An anomaly in the form of an increased cadmium content in the eastern 
test site was identified based on in situ measurements. Additionally, the use of spec-
tral indices: NDVI, SAVI, IRECI, CIred-edge, PSRI and HMSSI, to assess the content of 
heavy metals in the soil was positively assessed (Tab. 3) in particular the content 
of Ni, Co, Cr, Zn.

The conducted pilot project shows that the spectral indices: NDVI, SAVI, IRECI, 
CIred-edge, PSRI and HMSSI calculated on the basis of images from Sentinel-2, have 
some potential to assess the content of nickel (R2 > 0.97) and cobalt (R2 > 0.94) on small 
agricultural plots (Fig. 9, Tab. 3). The calculation of determination indicators was 
based on only three points, so the Authors are cautious about the results obtained 
in the research. The confirmation of the obtained results compels us to continue the 
research on a larger number of experimental sites. High-resolution multispectral im-
aging from commercial remote sensing constellations or UAV platforms may bring 
much better results, and this will also be the subject of further experimental work.
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