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Abstract: The possibility to use hyperspectral images (CHRIS/PROBA) and multispec-
tral images (Sentinel-2) in the classification of forest communities is assessed 
in this article. The pre-processing of CHRIS/PROBA image included: noise re-
duction, radiometric correction, atmospheric correction, geometric correction. 
Due to MNF transformation the number of the hyperspectral image channels 
was reduced (to 10 channels) and smiling errors were removed. Sentinel-2 im-
age (level 2A) did not require pre-processing. Three tree genera occurring in 
the study area were selected for the classification: pine (Pinus), alder (Alnus) 
and birch (Betula). Image classification was carried out with three methods: 
SAM (Spectral Angle Mapper), MTMF (Mixture Tuned Matched Filtering), 
SVM (Support Vector Machine). For the CHRIS/PROBA image, the algo-
rithm SVM turned out to be the best. Its overall accuracy (OA) was 72%. The 
poorest result (OA = 52%) was for the MTMF classifier. In the classification 
of Sentinel-2 multispectral image the best result was for the MTMF method: 
OA = 82%, kappa coefficient 0.7. For other methods, the overall accuracy ex-
ceeded 65%. Among the classified genera, the highest producer’s accuracy was 
obtained for pine (PA = 96%), and the broad-leaf genera: alder and birch had 
PA ranging from 42% to 85%.
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1. Introduction

In the context of forest management, remote sensing represents a rich and im-
portant source of information on the Earth surface. Illegal logging, floods, droughts 
and fires are examples of threats that can be continuously monitored. Forested ar-
eas can be huge and thus the monitoring of forest communities and the inventory of 
plant species/generic composition with traditional field methods is costly and labor 
intensive – and sometimes even impossible to carry out. For many years, scientists 
have been conducting research related to the application of airborne [1–3] and sat-
ellite [4–9] remote sensing. Due to such applications, it is possible to study the tree 
stands and condition of vegetation in large areas without human intervention in the 
natural environment [10–13]. Since 2015, multispectral images of Sentinel-2 (S-2), 
Copernicus program are available with very good temporal (up to 2–3 days for 
middle latitudes) and spatial (10 m, 20 m) resolutions [14]. Moreover, the spec-
tral characteristics of S-2 (13 spectral bands) make it a very valuable dataset for 
quasi-continuous monitoring of environmental changes [15], agricultural manage-
ment [16] as well as for studying the structure and characteristics of forest commu-
nities [17, 18].

On the other hand, for at least two decades, hyperspectral data enable the acqui-
sition of very detailed information related to ecology, agriculture, forestry, e.g., for 
the study of plant species compositions, crop diversity, or stand evaluation in forest 
areas [2, 3, 9, 11, 19, 20]. Hyperspectral images are characterized by rich spectral 
information obtained as a result of recording electromagnetic radiation in numer-
ous and narrow spectral ranges (4–10 nm). Hyperspectral data from ESA’s CHRIS/
PROBA (Compact High Resolution Imaging Spectrometer/The Project for On-Board 
Autonomy) experimental mission, made a very valuable contribution to the study 
of vegetation and forests and their structure [21–24]. In the literature, many scien-
tists have presented results on the classification and mapping tree stands based on 
hyperspectral data of much larger range and more possibilities of image analyses, 
compared to multispectral data [25–28].

The current study had two main objectives: (i) the application of hyperspec-
tral (CHRIS/PROBA) and multispectral (Sentinel-2) data to determine the occurrence 
of specific species in a selected forest area; and (ii) the assessment and comparison of 
the level of classification accuracy obtained with two different types of classifiers 
in the context of species identification.

2. Study Area and Data

The study area is in the Warmia-Masuria Voivodeship (Province), on the border 
between the districts of Olsztyn, Szczytno and Nidzica. It is south-east of the city of 
Olsztynek (Fig. 1). It covers the area around lakes Omulew, Gim and Kiernoz Wielki. 
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The area is part of the Napiwodzko-Ramucka Forest. The predominant species oc-
curring in the area is the Scotch pine (Pinus sylvestris). There are several forms of 
nature protection in the area; the whole forest is a protected landscape area.

Fig. 1. The study area – the range of hyperspectral image CHRIS/PROBA –  
the base map OpenStreetMap
Source: www.openstreetmap.org

For the selected area, the set of hyperspectral data covering five scenes re-
corded in various angles: −55°, −36°, 0°, 36°, 55° was downloaded. Hyperspectral 
data of CHRIS (Compact High Resolution Imaging Spectrometer) sensor, put on 
satellite PROBA-1 (The Project for On-Board Autonomy), were obtained from the 
repository of the European Space Agency (ESA) [14]. The scene covered the area 
south of the Omulew Lake (Fig. 1) and was recorded on August 3, 2018 in the 
NADIR mode. The selected image had 62 spectral channels in Visible and Near In-
frared (VNIR) (400–1050 nm) range, spatial resolution 34 m, processing level 1A [29].

Moreover, multispectral image from the MSI (MultiSpectral Instrument) sensor 
of the Sentinel-2 satellite records electromagnetic radiation in the range of VNIR 
and Short-Wave Infrared (SWIR). The Sentinel-2 image, processing level 2A, was 
obtained free of charge from SentinelHub [14]. The image was recorded on Septem-
ber 20, 2018 in 13 spectral channels of spatial resolution 10 m (VNIR), 20 m (SWIR1), 
60 m (SWIR2).
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To prepare test and control samples, the data of vector BDOT 10k (Baza 
Danych Obiektów Topograficznych – Database of Topographic Objects) were ap-
plied. The database (updated March 2019) is available free of charge in vector 
shapefile format from geoportal.gov.pl [30]. It is a database containing vector rep-
resentation of topographic objects with their description at a scale of 1:10,000. The 
“PTLZ” layer, including land cover objects (wooded and forested areas), was taken 
for the analysis.

3. Methods

The processing of satellite data for the classification of forest communities was 
carried out in several stages, depending on the level of image processing. In case 
of the data of Sentinel-2 (level 2A), the obtained image was ready for the analy-
sis (after radiometric, atmospheric and geometric correction. Channels of VNIR 
and SWIR1 range (10 channels) were combined in one image file and re -sampled 
to 20-meter resolution. We excluded three channels with 60-meter resolution 
(band 1 – Coastal aerosol, band 9 – Water vapour, band 10 – Cirrus) from the anal-
ysis as they were not useful for the purposes of a forest survey. In the case of the 
CHRIS/PROBA images (level 1A), it was necessary to carry out further stages of 
pre-processing, e.g., noise reduction [31], masking of clouds and atmospheric cor-
rection [32]. These procedures were carried out in ESA SNAP Toolbox. Addition-
ally, Cross-Track Illumination Correction was carried out in ENVI for lines with 
the function of polynomial of third degree [33]. In the final stage of pre-processing, 
a geometric correction in CATALYST Professional software using a math model was 
carried out. Seven ground control points (GCPs), regularly distributed throughout 
the image, were used. The terrain coordinates of GCPs were obtained from an aerial 
orthophotomap and a digital elevation model (SRTM-Shuttle Radar Topography 
Mission). As a result of aerotrangulation, the following accuracies were obtained: 
RMS = 3.41 m, RMSX = 2.03 m, RMSY = 2.74 m. Orthorectification was performed 
using the cubic convolution interpolation method.

The study area was limited to forest areas. To carry out this, a mask covering 
the cloud-covered part of the image was also applied. Then, data redundancy re-
duction and elimination of channels affected by radiometric “smile” errors were 
performed. For this purpose, the image was transformed using the Minimum Noise 
Fraction (MNF) procedure [33, 34] implemented in ENVI software. After careful 
analysis, a set of 10 channels (1, 2, 4, 6, 7, 12, 11, 15, 17, and 18) containing the largest 
amount of spectral information and the least noise were selected from the image 
containing 62 channels after MNF transformation. It is an approach known from 
literature [27, 35–37] and used in the preprocessing of hyperspectral images, which 
are subjected to classification. This approach makes it possible to reduce the number 
of channels and thus counteract the Hughes effect.
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Based on color compositions from MNF channels and vector data, the BDOT, 
training and control samples were prepared for the classification and accuracy es-
timation. For the districts of: Olsztyn, Szczytno, and Nidzica, the traverses of the 
BDOT layer representing the same tree genus were aggregated. Three genera of 
trees occurring in the biggest clusters were selected for the classification. These were: 
birch (Betula), alder (Alnus) and pine (Pinus). Due to too small area (<1%) and the lack 
of the possibility to make training/control parcels of a sufficient number of pixels, 
other genera: beech (Fagus), ash (Fraxinus), linden (Tilia), larch (Larix)) were rejected. 
On the other hand, the clusters of oak (Quercus) and spruce (Picea) were eliminat-
ed because of the thick cloud cover in the area where these genera occurred in the 
Chris image. Based on the prepared training samples, spectral curves were generat-
ed (Fig. 2).

Fig. 2. Spectral curves of the classified genera of trees, based on images of:  
a) CHRIS/PROBA; b) Sentinel-2

a)

b)
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Images of CHRIS/PROBA and Sentinel-2 were classified by two types of clas-
sifiers using ENVI software. The first type includes methods based on the compar-
ison of spectral curves of each image pixel with the pattern curves representing the 
data of the given class. These are methods dedicated to the classification of hyper-
spectral images with much higher spectral resolution than in multispectral images. 
The Spectral Angle Mapper (SAM) [35, 36] method was applied, based on the com-
parison of spectral angles between the pattern vector and the vector of the examined 
pixel. The spectral curves generated for pine, birch, and alder were used. Based on 
testing, spectral angle values of 0.5 radian and 0.2 radian were used for the CHRIS/
PROBA and Sentinel-2 images, respectively.

The second method was the Mixture Tuned Matched Filtering (MTMF) meth-
od [36, 37]. This algorithm defines the linear spectral combination of fractions/
components of each pixel. As an input file for MTMF classification, the image af-
ter MNF transformation (10 selected channels) and reference spectral curves trans-
formed to MNF space were used.

The second type of classification method used in this study is a machine learn-
ing (ML) method: Support Vector Machine (SVM) [38, 39]. ML algorithms are “uni-
versal approximators”, they learn the behavior of the system from a set of training 
data and do not require prior knowledge of the nature of the relationships between 
the data [38]. These methods have been very popular in recent years for image clas-
sification.

For both image types (hyperspectral and multispectral), the SVM algorithm was 
applied and assuming the following parameters: kernel type RBF (Radial Basis Func-
tion), with a probability threshold of 0.6 for CHRIS/PROBA and 0.1 for Sentinel-2.

The accuracy of classification was estimated based on the Confusion Matrix 
and the following parameters: overall accuracy (OA), producer accuracy (PA), and 
user accuracy (UA), kappa coefficient, omission error (OE) and commission er-
ror (CE) [40].

4. Results and Discussion

The results of SAM, MTMF, and SVM classification made for the hyper-
spectral image are presented in Figure 3. The results obtained with three classifi-
ers (SAM, MTMF, SVM) for the multispectral image are presented in Figure 4. The 
parameters of estimated accuracy of classification can be seen in Tables 1 and 2.

The hyperspectral images were classified with varying accuracy depending 
on the classifier used. The OA accuracy value ranged from 53% (MTMF) to al-
most 72% (SVM) (Tab. 1). In the SAM and MTMF classification images (Fig. 3), 
a noticeable “zonality of classes” can be observed, which may be caused by remain-
ing error “smile”. SVM method proved to be much less sensitive to this type of 
interference.
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SAM method in the classification of the hyperspectral image achieved the over-
all accuracy of 62% (kappa = 0.5). In the case of the accuracy of the classification 
of subsequent trees, the best classified was pine, for which the producer’s accura-
cy was 70%. Much lower producer’s accuracy was obtained for birch (58%) and al-
der (52%). The omission errors in case of broad-leaf trees were over 42%, while the 
commission errors were around 20% (Tab. 1).

d)c)

unclassified
birch
alder
pine

a)

unclassified
birch
alder
pine

b)

unclassified
birch
alder
pine

Fig. 3. The result of the classification of the CHRIS/PROBA hyperspectral image  
with different methods: SAM (a), MTMF (b), and SVM (c); color composition made of  
the fraction image obtained in MTMF classification: R – pine, G – alder, B – birch (d)
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The classification with the MTMF method gave the lowest values of total ac-
curacy (53%). A large part of the image was attributed to the class of unclassified 
areas. One should notice very low producer’s accuracy (PA = 52%) for the pine class, 
which for SVM classifiers gave the best results (above 90%). In the case of broad-leaf 
trees, the alder achieved the highest level of accuracy among all the tested classifi-
ers (PA = 64%). This was due to a large commission error (EC = 47%) while simulta-
neously being underestimated for the birch class, for which the omission error was 
as high as 58% (Tab. 1).

The SVM machine learning methods obtained values of overall accuracy at a lev-
el of 72% [9]. The best classified genus occurring in the studied area was pine (Pinus), 
for which the producer’s accuracy was as high as 96% for SVM [12]. The lowest 
producer’s accuracy was obtained in both methods for alder – about 50%. In case of 
the second broad-leaf genus (birch) – the producer’s accuracy was 54% for the SVM 
classifier (Tab. 1).

Table 1. The results of the classification accuracy assessment of the CHRIS/PROBA image 

Classifier Type of 
tree

Overall 
accuracy 
(OA) [%]

Kappa
Producer 
accuracy 
(PA) [%]

User 
accuracy 
(UA) [%]

Error of 
omission 
(EO) [%]

Error of 
commission 

(EC) [%]

SAM

pine

62.1 0.5

70.5 100.0 29.6 0.0

alder 52.0 81.3 48.0 18.8

birch 57.7 79.0 42.3 21.1

MTMF

pine

52.6 0.4

52.3 95.8 47.7 4.2

alder 64.0 53.3 36.0 46.7

birch 42.3 84.6 57.7 15.4

SVM

pine

71.6 0.6

95.5 91.3 4.6 8.7

alder 48.0 80.0 52.0 20.0

birch 53.9 87.5 46.2 12.5

In the case of the classification of the Sentinel-2 multispectral image (Fig. 4, 
Tab. 2), the highest accuracy was reached with MTMF, for which the overall accu-
racy equaled 82%, the kappa coefficient was 0.72. The lowest overall accuracy of 
S-2 image was obtained for the SAM classifier (OA = 65%, kappa = 0.5).

It was worth noticing that the SVM and SAM classifiers reached very similar 
levels of classification accuracy to those in case of hyperspectral image – the differ-
ence was only 1% and 4%, respectively. This can result from similar image parame-
ters obtained after preprocessing – both images contained 10 channels.

The Sentinel-2 image achieved overall accuracy at a very good level: SAM (65%), 
SVM (73%), MTMF (82%). One can state that the multispectral image can be 
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successfully applied in the classification of forest communities and other forms of 
land cover [6, 17, 18]. A great advantage of this type of data is their processing lev-
el 2A, which significantly reduces the duration and costs of work. Temporal resolu-
tion of Sentinel-2 images (2–3 days) gives the opportunity to monitor forest commu-
nities in large areas, e.g., for national parks, in which human intervention in natural 
environment is forbidden [41].

d)

a)

unclassified
birch
alder
pine

c)

unclassified
birch
alder
pine

unclassified
birch
alder
pine

b)

Fig. 4. The results of the classification of multispectral image Sentinel-2 with methods:  
SAM (a), MTMF (b), and SVM (c); color composition made of the fraction image  

obtained in MTMF classification: R – pine, G – alder, B – birch (d)
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It was also assumed that, due to higher spectral resolution (number of chan-
nels), better results would be obtained for the CHRIS/PROBA hyperspectral image. 
The lower accuracy of classification obtained for the MTMF classifier may be at-
tributed to various factors. One has to regard the difference in spectral ranges, in 
which CHRIS/PROBA and S-2 were recorded. The lack of channels in SWIR spectral 
range, could be an important reason lowering the accuracy of classification [6, 17]. 
This is especially the case with the MTMF classifier, which is based on the analysis 
of spectral curves.

Moreover, an important aspect in the context of the assessment of the possibil-
ity of using the CHRIS/PROBA hyperspectral image is cloud cover and differences 
in illumination, which cause significant deformations in the spectral answer given 
by the subsequent objects [42]. Most probably, the pre-processing and MNF trans-
formation were insufficient to obtain a noise-free image. The effect of smiling was 
visible in the images after the classification (SAM, MTMF).

Table 2. The results of the classification accuracy assessment of the Sentinel-2 image

Classifier Type of 
tree

Overall 
accuracy 
(OA) [%]

Kappa
Producer 
accuracy 
(PA) [%]

User 
accuracy 
(UA) [%]

Error of 
omission 
(EO) [%]

Error of 
commission 

(EC) [%]

SAM

pine

72.6 0.6

61.4 100.0 38.6 0.0

alder 84.0 75.0 16.0 25.0

birch 53.9 87.5 46.2 12.5

MTMF

pine

82.1 0.7

93.2 95.4 6.8 4.7

alder 60.0 83.3 40.0 16.7

birch 84.6 68.8 15.4 31.3

SVM

pine

65.3 0.5

90.9 97.6 9.1 2.4

alder 52.0 86.7 48.0 13.3

birch 61.5 94.1 38.5 5.9

Certainly, the difference in spatial resolution of the images (CHRIS – 34 m, Sen-
tinel-2 – 20 m) also influenced the classification results. The crown width for the 
box birch is 5–10 m, black alder and limber pine reach a width of about 2 m [43]. 
The spectral reflectance value of a single pixel may represent an averaging of the 
spectral characteristics of several or even a dozen trees. It depends on the species 
of trees, their vegetative state, age, canopy closure, or factors related to terrain [44]. 
Thus, the smaller field pixel dimension improves the quality of forest community 
classification.
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5. Conclusion

The supervised classification achieved the best result for the Sentinel-2 multi-
spectral image with the application of MTMF method. The obtained overall accu-
racy was 82%, the kappa coefficient equaled 0.7. The results of overall accuracy for 
the hyperspectral image were 10% lower. The best result was for the SVM classifier, 
where OA = 72% and kappa coefficient was 0.6. Definitely worse classification re-
sults were obtained for the methods based on spectral curves. This can be caused 
by sensitivity of these methods to radiometric errors, which, despite pre- processing 
could not be totally eliminated. Among the three classified genera (pine, alder, 
birch), the best results were obtained for pine (producer’s accuracy over 90%). Prob-
ably, the important factor influencing such a result was the habitat advantage of that 
species (above 95% of the study area). Additionally, the spectral curves of broad-leaf 
trees (alder and birch) have a very similar course, which could cause mistakes in the 
classification and a decrease in the producer’s accuracy for these genera. Neverthe-
less, one can state that the results of overall accuracy were quite satisfactory, both for 
the CHRIS/PROBA hyperspectral, and Sentinel-2. Undoubtedly, the CHRIS/PROBA 
hyperspectral is a source of great information potential referring to the forms of land 
cover. Nonetheless, the authors plan a deeper analysis of a larger number of the 
images of the same area, of higher radiometric homogeneity of the area, obtained 
during cloudless days. The results obtained will make a reference point in future 
analyses using a similar set of image data.

References

[1] Trier Ø., Salberg A., Kermit M., Rudjord Ø., Gobakken T., Næsset E., 
Aarsten D.: Tree species classification in Norway from airborne hyperspectral and 
airborne laser scanning data. European Journal of Remote Sensing, vol. 51, 
2018, pp. 336–351. https://doi.org/10.1080/22797254.2018.1434424.

[2] Dadon A., Mandelmilch M., Ben-Dor E., Sheffer E.: Sequential PCA-based 
Classification of Mediterranean Forest Plants using Airborne Hyperspectral Re-
mote Sensing. Remote Sensing, vol. 11, 2019, 2800. https://doi.org/10.3390/
rs11232800.

[3] Nezami S., Khoramshahi E., Nevalainen O., Pölönen I., Honkavaara E.: 
Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep 
Learning Convolutional Neural Networks. Remote Sensing, vol. 12, 2020, 1070. 
https://doi.org/10.3390/rs12071070.

[4] Goodenough D., Bhogal A., Dyk A., Hollinger A., Mah Z., Niemann O., 
Pearlman J. et al.: Monitoring forests with Hyperion and ALI. [in:] IEEE Interna-
tional Geoscience and Remote Sensing Symposium, vol. 2, IEEE, Piscataway 2002, 
pp. 882–885. https://doi.org/10.1109/IGARSS.2002.1025717.

https://doi.org/10.1080/22797254.2018.1434424
https://doi.org/10.3390/rs11232800
https://doi.org/10.3390/rs11232800
https://doi.org/10.3390/rs12071070
https://doi.org/10.1109/IGARSS.2002.1025717


114 E. Głowienka, N. Zembol

[5] Stoffels J., Mader S., Hill J., Werner W., Ontrup G.: Satellite-based stand-wise 
forest cover type mapping using a spatially adaptive classification approach. Euro-
pean Journal of Forest Research, vol. 131, 2012, pp. 1071–1089. https://doi.
org/ 10.1007/s10342-011-0577-2.

[6] Immitzer M., Vuolo F., Atzberger C.: First Experience with Sentinel-2 Data 
for Crop and Tree Species Classifications in Central Europe. Remote Sensing, 
vol. 8(3), 2016, 166. https://doi.org/10.3390/rs8030166.

[7] Laurin G., Puletti N., Hawthorne W., Liesenberg V., Corona P., Papale D., 
Chen Q., Valentini R.: Discrimination of tropical forest types, dominant species, 
and mapping of functional guilds by hyperspectral and simulated multispectral 
Sentinel-2 data. Remote Sensing of Environment, vol. 176, 2016, pp. 163–176. 
https://doi.org/10.1016/j.rse.2016.01.017.

[8] Banskota A., Kayastha N., Falkowski M., Wulder M., Froese R., White J.: 
Forest monitoring using Landsat time series data: A review. Canadian Journal 
of Remote Sensing, vol. 40, no. 5, 2014, pp. 362–384. https://doi.org/10.1080/ 
07038992.2014.987376.

[9] Wan L., Lin Y., Zhang H., Wang F., Liu M., Lin H.: GF-5 Hyperspectral Data for 
Species Mapping of Mangrove in Mai Po, Hong Kong. Remote Sensing, vol. 12, 
2020, 656. https://doi.org/10.3390/rs12040656.

[10] Raczko E., Zagajewski B.: Tree Species Classification of the UNESCO Man and 
the Biosphere Karkonoski National Park (Poland) Using Artificial Neural Networks 
and APEX Hyperspectral Images. Remote Sensing, vol. 10, 2018, 1111. https://
doi.org/10.3390/rs10071111.

[11] Modzelewska A., Kamińska A., Fassnacht F., Stereńczak K.: Multitemporal 
hyperspectral tree species classification in the Białowieża Forest World Heritage 
site, Forestry. An International Journal of Forest Research, vol. 94, no. 3, 2021, 
pp. 464–476. https://doi.org/10.1093/forestry/cpaa048.

[12] Sabat-Tomala A., Raczko E., Zagajewski B.: Comparison of Support Vector Ma-
chine and Random Forest Algorithms for Invasive and Expansive Species Classifi-
cation Using Airborne Hyperspectral Data. Remote Sensing, vol. 12, 2020, 516. 
https://doi.org/10.3390/rs12030516.

[13] Shoot C., Andersen H., Moskal L., Babcock C., Cook B., Morton D.: Classi-
fying Forest Type in the National Forest Inventory Context with Airborne Hyper-
spectral and Lidar Data. Remote Sensing, vol. 13, 2021, 1863. https://doi.org/ 
10.3390/rs13101863.

[14] ESA. https://earth.esa.int/eogateway/missions [access: 10.04.2021].
[15] Close O., Petit S., Beaumont B., Hallot E.: Evaluating the Potentiality of Senti-

nel-2 for Change Detection Analysis Associated to LULUCF in Wallonia, Belgium. 
Land, vol. 10, 2021, 55. https://doi.org/10.3390/land10010055.

[16] Hejmanowska B., Kramarczyk P., Głowienka E., Mikrut S.: Reliable Crops 
Classification Using Limited Number of Sentinel-2 and Sentinel-1 Images. Remote 
Sensing, vol. 13, no. 16, 2021, 3176. https://doi.org/10.3390/rs13163176.

https://doi.org/10.1007/s10342-011-0577-2
https://doi.org/10.1007/s10342-011-0577-2
https://doi.org/10.3390/rs8030166
https://doi.org/10.1016/j.rse.2016.01.017
https://doi.org/10.1080/07038992.2014.987376
https://doi.org/10.1080/07038992.2014.987376
https://doi.org/10.3390/rs12040656
https://doi.org/10.3390/rs10071111
https://doi.org/10.3390/rs10071111
https://doi.org/10.1093/forestry/cpaa048
https://doi.org/10.3390/rs12030516
https://doi.org/10.3390/rs13101863
https://doi.org/10.3390/rs13101863
https://earth.esa.int/eogateway/missions
https://doi.org/10.3390/land10010055
https://doi.org/10.3390/rs13163176


Forest Community Mapping Using Hyperspectral (CHRIS/PROBA) and Sentinel-2... 115

[17] Chrysafis I., Mallinis G., Siachalou S., Patias P.: Assessing the relationships 
between growing stock volume and sentinel-2 imagery in a mediterranean forest 
ecosystem. Remote Sensing Letters, vol. 8, 2017, pp. 508–517. https://doi.org/ 
10.1080/ 2150704X.2017.1295479.

[18] Astola H., Häme T., Sirro L., Molinier M., Kilpi J.: Comparison of Sentinel-2 and 
Landsat 8 imagery for forest variable prediction in boreal region. Remote Sensing of En-
vironment, vol. 223, 2019, pp. 257–273. https://doi.org/10.1016/ j.rse.2019.01.019.

[19] Kokaly R., Despain D., Clark R., Livo K.: Mapping vegetation in Yellowstone 
National Park using spectral feature analysis of AVIRIS data. Remote Sensing of 
Environment, vol. 84, no. 3, 2003, pp. 437–456. https://doi.org/10.1016/S0034-
4257(02)00133-5.

[20] Dalponte M., Ørka H.O., Gobakken T., Gianelle D., Næsset E.: Tree Species 
Classification in Boreal Forests with Hyperspectral Data. IEEE Transactions on 
Geoscience and Remote Sensing, vol. 55, no. 5, 2013, pp. 2632–2645. https://
doi.org/10.1109/TGRS.2012.2216272.

[21] Kayitakire F., Defourny P.: Forest type discrimination using multi-angle hyper-
spectral data. [in:] Proceedings 2nd CHRIS/PROBA Workshop, ESA SP, Frascati, 
Italy, 2004, 2004, pp. 72–84. http://hdl.handle.net/2078.1/76194.

[22] Duca R., Del Frate F.: Hyperspectral and multiangle CHRIS-PROBA images for 
the generation of land cover maps. IEEE Transactions on Geoscience and Re-
mote Sensing, vol. 46, no. 10, 2008, pp. 2857–2866. https://doi.org/10.1109/
TGRS.2008.2000741.

[23] Verrelst J., Schaepman M.E., Koetz B., Kneubühler M.: Angular sensitivity 
analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sensing 
of Environment, vol. 112, no. 5, 2008, pp. 2341–2353. https://doi.org/10.1016/ 
j.rse.2007.11.001.

[24] Stagakis S., Vanikiotis T., Sykiotia O.: Estimating forest species abundance 
through linear unmixing of CHRIS/PROBA imagery. ISPRS Journal of Photo-
grammetry and Remote Sensing, vol. 119, 2016, pp. 79–89. https://doi.org/ 
10.1016/j.isprsjprs.2016.05.013.

[25] Skoupý O., Zejdová L., Hanuš J.: The use of hyperspectral remote sensing for 
mapping the age composition of forest stands. Journal of Forest Science, vol. 58, 
2012, pp. 287–297. https://doi.org/10.17221/86/2011-JFS.

[26] Hycza T., Stereńczak K., Bałazy R.: Potential use of hyperspectral data to clas-
sify forest tree species. New Zeland Journal of Forestry Science, vol. 48, 2018, 
pp. 1–13. https://doi.org/10.1186/s40490-018-0123-9.

[27] Bartkowiak P., Osińska-Skotak K.: Analiza możliwości wykorzystania obrazów 
hiperspektralnych HySpex do inwentaryzacji drzewostanów leśnych Puszczy Biało-
wieskiej. Teledetekcja Środowiska, t. 55, 2016, pp. 24–44.

[28] Markiet V., Mõttus M.: Estimation of boreal forest floor reflectance from air-
borne hyperspectral data of coniferous forests. Remote Sensing of Environment, 
vol. 249, 2020, 112018. https://doi.org/10.1016/j.rse.2020.112018.

https://doi.org/10.1080/2150704X.2017.1295479
https://doi.org/10.1080/2150704X.2017.1295479
https://doi.org/10.1016/j.rse.2019.01.019
https://doi.org/10.1016/S0034-4257(02)00133-5
https://doi.org/10.1016/S0034-4257(02)00133-5
https://doi.org/10.1109/TGRS.2012.2216272
https://doi.org/10.1109/TGRS.2012.2216272
http://hdl.handle.net/2078.1/76194
https://doi.org/10.1109/TGRS.2008.2000741
https://doi.org/10.1109/TGRS.2008.2000741
https://doi.org/10.1016/j.rse.2007.11.001
https://doi.org/10.1016/j.rse.2007.11.001
https://doi.org/10.1016/j.isprsjprs.2016.05.013
https://doi.org/10.1016/j.isprsjprs.2016.05.013
https://doi.org/10.17221/86/2011-JFS
https://doi.org/10.1186/s40490-018-0123-9
https://doi.org/10.1016/j.rse.2020.112018


116 E. Głowienka, N. Zembol

[29] Barnsley M., Settle J., Cutter M., Lobb D., Teston F.: The PROBA/CHRIS mis-
sion: A low-cost smallsat for hyperspectral multiangle observations of the Earth sur-
face and atmosphere. IEEE Transactions on Geoscience and Remote Sensing, 
vol. 42, no. 7, 2004, pp. 1512–1520. https://doi.org/10.1109/TGRS.2004.827260.

[30] GUGIK. http://geoportal.gov.pl [access: 15.05.2021].
[31] Gómez-Chova L., Alonso L., Guanter L., Camps-Valls G., Calpe J., More-

no J.: Correction of systematic spatial noise in push-broom hyperspectral sensors: 
application to CHRIS/PROBA images. Applied Optics, vol. 47, no. 28, 2008, 
pp. F46–F60. https://doi.org/10.1364/AO.47.000F46.

[32] Guanter L., Alonso L., Moreno J.: A method for the surface reflectance retriev-
al from PROBA/CHRIS data over land: Application to ESA SPARC campaigns. 
IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 12, 2005, 
pp. 2908–2917. https://doi.org/10.1109/TGRS.2005.857915.

[33] L3HARRIS. https://www.l3harrisgeospatial.com/docs [access: 11.04.2021].
[34] Green A., Berman M., Switzer P., Craig M.: A transformation for ordering 

multispectral data in terms of image quality with implications for noise removal. 
IEEE Transactions on Geoscience and Remote Sensing, vol. 26, no. 1, 1988, 
pp. 65–74. https://doi.org/10.1109/36.3001.

[35] Kruse F., Lefkoff A., Dietz J.: Expert System-Based Mineral Mapping in northern 
Death Valley, California/Nevada using the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS). Remote Sensing of Environment, special issue on AVIRIS, 
vol. 44, 1993, pp. 309–336. https://doi.org/10.1016/0034-4257(93)90024-R.

[36] Głowienka-Mikrut E.: Analiza porównawcza metod przetwarzania danych hiper-
spektralnych o zróżnicowanej dokładności. AGH, Kraków 2014 [Ph.D. thesis].

[37] Boardman J.: Leveraging the High Dimensionality of AVIRIS Data for Improved 
Sub-Pixel Target Unmixing and Rejection of False Positives: Mixture Tuned Match 
Filtering. [in:] Summaries of the Seventh JPL Airobrne Earth Science Workshop, 
vol. 1, 1998, pp. 53.

[38] Lary D., Alavi A., Gandomi A., Walker A.: Machine learning in geosciences and 
remote sensing. Geoscience Frontiers, vol. 7, no. 1, 2016, pp. 3–10. https://doi.
org/ 10.1016/j.gsf.2015.07.003.

[39] Knauer U., Von Rekowski C., Stecklina M., Krokotsch T., Pham Minh T., 
Hauffe V., Kilias D. et al.: Tree Species Classification Based on Hybrid Ensembles 
of a Convolutional Neural Network (CNN) and Random Forest Classifiers. Remote 
Sensing, vol. 11, 2019, 2788. https://doi.org/10.3390/rs11232788.

[40] Janssen F., van der Wel F.: Accuracy assessment of satellite derived land cover 
data: A review. Photogrammetric Engineering and Remote Sensing, vol. 60, 
1994, pp. 419–426.

[41] Phiri D., Simwanda M., Salekin S., Nyirenda V.R., Murayama Y., Ranaga-
lage M.: Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens-
ing, vol. 12, no. 14, 2020, 2291. https://doi.org/10.3390/rs12142291.

https://doi.org/10.1109/TGRS.2004.827260
http://geoportal.gov.pl
https://doi.org/10.1364/AO.47.000F46
https://doi.org/10.1109/TGRS.2005.857915
https://doi.org/10.1109/36.3001
https://doi.org/10.1016/0034-4257(93)90024-R
https://doi.org/10.1016/j.gsf.2015.07.003
https://doi.org/10.1016/j.gsf.2015.07.003
https://doi.org/10.3390/rs11232788
https://doi.org/10.3390/rs12142291


Forest Community Mapping Using Hyperspectral (CHRIS/PROBA) and Sentinel-2... 117

[42] Gupta N., Milton E.J.: Quality Assessment of CHRIS/PROBA Image and Recom-
mendation for Land Cover Classification. [in:] Proceedings of the Remote Sensing 
and Photogrammetry Society Annual Conference 2009, pp. 118–126.

[43] Encyklopedia drzew. http://encyklopediadrzew.pl [access: 30.07.2021].
[44] Leckie D., Tinis S., Nelson T., Burnett C., Gougeon F., Cloney E., Paradine D.: 

Issues in species classification of trees in old growth conifer stands. Canadian Jour-
nal of Remote Sensing, vol. 31, 2005, pp. 175–190. https://doi.org/10.5589/
m05-004.

http://encyklopediadrzew.pl
https://doi.org/10.5589/m05-004
https://doi.org/10.5589/m05-004

