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Abstract: One of the great challenges of achieving the shared vision of the 2030 Agenda 
for Sustainable Development is having high-quality, timely, comparable, and 
accessible data that allows to measure and report progress on the Sustainable 
Development Goals (SDG). Hence, in many countries, geospatial information 
(including Earth observation) and algorithms implemented in cloud comput-
ing platforms have become important tools to monitor indicators of the SDG 
thanks to their broad accessibility and global coverage. However, emerging 
countries still face barriers to the implementation of technologies to manage 
the large amounts of EO data. This article aims to show the advantages of sat-
ellite-based EO in the measurement of SDG indicators, as well as challenges 
emerging countries face in the use of these technological tools. It addresses why 
the open-source tool Open Data Cube (ODC) should be seen as a response to 
the said challenges. Finally, there is a description regarding the experience of 
Mexico with the use and application of this tool for the measurement of SDG in-
dicators, from the development and implementation of the Mexican Geospatial 
Data Cube (MGDC) to the results obtained from its application in the support 
for the measurement of SDG indicators 6.6.1 Change in the extent of water-related 
ecosystems over time and 15.1.1 Forest area as a proportion of total land area.
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1. Introduction:  
Satellite-based Earth Observation in Support of the SDG

In 2015, the leaders of 193 member countries of the United Nations agreed on 
the 17 Sustainable Development Goals (SDG), to eradicate poverty, protect the plan-
et and ensure prosperity for all people by the year 2030. These 17 goals aim to reach 
169 targets, which are monitored and evaluated through 231 unique indicators.

At the national level, the National Statistics Offices (NSOs) usually have cus-
tody of the production of the indicators. However, the diversity, scope and scale of 
the SDG require the participation of many stakeholders, in addition to NSOs [1, 2], 
which contribute to the development of tools and technological platforms that are 
accessible and easy to implement in all countries, including emerging countries [3], 
as well as the production and analysis of timely, accessible, reliable, and high-quali-
ty data that will guarantees the principle of “leaving no one behind” [1].

The Voluntary National Reviews Synthesis Report [4], on the key findings of the 
progress of the SDG, concluded that countries in all regions are exploring technolo-
gy solutions to meet their needs and address the issues of accessibility, the sharing 
and integration of data, as well as data breakdown at a high level [2].

Reliance on geospatial information, including Earth Observation (EO), that is 
the gathering of information about Earth’s physical, chemical, and biological sys-
tems via satellite-based remote sensing technologies, is gaining momentum as coun-
tries have begun implementation of the 2030 Agenda at the local, subnational, na-
tional, regional, and global levels [2].

These new technologies aim to replace costly traditional approaches in the 
countries that use them [5], as well as being easy to include in emerging countries 
where this type of technology is not commonly included. Therefore, EO provides 
a substantial contribution to the achievements of the SDG by enabling informed 
decision-making and monitoring expected results [6].

In order to show, promote, and implement the potential of this type of data 
in monitoring and evaluating the SDG, the Group on Earth Observations (GEO) 
launched an initiative called Earth Observations for the Sustainable Development 
Goals (EO4SDG) in 2015, with the participation of members of GEO and other orga-
nizations and initiatives [7]. Figure 1, produced by GEO, indicates the targets and 
indicators that Earth Observation supports, both directly and indirectly.

In addition to this, the Working Group on Geospatial Information (WGGI) of the 
Inter-Agency and Expert Group on the SDG Indicators (IAEG-SDG) has estimated 
that approximately 20% of the SDG indicators can be assessed and measured direct-
ly using geospatial information or through its integration with statistical data [9].

While EO are a necessary data source for monitoring and driving progress on 
the SDG, UN member states cannot always harness this value as there are different 
types of challenges identified in their adoption, such as: institutional; financial; pol-
icy and regulation related (lack of political commitment, coordination, institutional 
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alliances and arrangements); technological (lack of standardization of data process-
ing methods, complexity in access to data, lack of relevant data that fit the purpose, 
lack of development of Information and communications technology application); 
related to technical and human capacities (i.e., skills and knowledge); as well as suf-
ficient use cases and good practice examples [2, 10].

For more information please contact:

Argyro Kavvada, NASA/BAH and EO4SDGs Initiative, E-mail: Argyro.Kavvada@nasa.gov

William Sonntag, GEO Secretariat, wsonntag@geosec.org

www.earthobservations.org | Twitter: @geosec2025 #openEOdata | FB: Group on Earth Observations 

Target
Contribute to progress on the Target,  

not necessarily the Indicator

Goal
Indicator

Direct measure or indirect 

support to the Indicator

1.4 1.5 1  No poverty 1.4.2

2.3 2.4 2.c 2 Zero hunger 2.4.1

3.3 3.4 3.9 3.d 3 Good health and well-being 3.9.1

4 Quality education

5.a 5 Gender equality 5.a.1

6.1 6.3 6.4 6.5 6.6 6.a 6.b 6 Clean water and sanitation 6.3.1 6.3.2 6.4.2 6.5.1 6.6.1

7.2 7.3 7.a 7.b 7 Affordable and clean energy 7.1.1

8.4
8 Decent work and economic 

growth

9.1 9.4 9.5 9.a
9 Industry, innovation and  

infrastructure
9.1.1 9.4.1

10.6 10.7 10.a 10 Reduced inequalities

11.1 11.3 11.4 11.5 11.6 11.7 11.b 11.c
11 Sustainable cities and 

communities
11.1.1 11.2.1 11.3.1 11.6.2 11.7.1

12.2 12.4 12.8 12.a 12.b
12 Responsible consumption 

and production
12.a.1

13.1 13.2 13.3 13.b 13 Climate action 13.1.1

14.1 14.2 14.3 14.4 14.6 14.7 14.a 14 Life below water 14.3.1 14.4.1 14.5.1

15.1 15.2 15.3 15.4 15.5 15.7 15.8 15.9 15 Life on land 15.1.1 15.2.1 15.3.1 15.4.1 15.4.2

16.8
16 Peace, justice and strong  

institutions

17.2 17.3 17.6 17.7 17.8 17.9 17.16 17.17 17.18 17 Partnerships for the goals 17.6.1 17.18.1

EARTH OBSERVATION AND GEOSPATIAL INFORMATION 
LINKAGES TO SDG GOALS, TARGETS AND INDICATORS

JN
 1

61
68

7

Fig. 1. Earth observations and geospatial information  
linkages to SDG, targets, and indicators

Source: [8]

This article aims to show the advantages of EO in the measurement of the SDG in-
dicators. To this end we first explain the challenges in the use of EO for emerging 
countries before explaining how the open-source tool ODC responds to these chal-
lenges, as well as the development and implementation of the Mexican Geospatial 
Data Cube. Subsequently, we describe the experience of Mexico regarding the use 
and application of this tool for the measurement of SDG indicators 6.6.1 Change in the 
extent of water-related ecosystems over time and 15.1.1 Forest area as a proportion of total 
land area. Finally, we present a discussion of these matters and some conclusions.
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2. Satellite-based Earth Observation Challenges  
in Emerging Countries

Geospatial information (including EO), together with new tools and technol-
ogies, offer opportunities to emerging countries’ capacities to monitor all facets of 
sustainable development as they mitigate in situ data availability shortages and pro-
vide reliable, up-to-date, cost-effective, and scalable data [11–13].

Freely available data from satellite constellations such as MODIS (Moderate 
Resolution Imaging Spectroradiometer), Landsat, and Sentinel have increasingly 
democratized access to timely satellite imagery from around the world. However, 
this growing availability of satellite imagery reveals different challenges, as tradi-
tional remote sensing analysis and data management techniques are not sufficient to 
handle this large amount of data

The data from EO can be described as Big Data, since it is characterized by mas-
sive amounts of data, multiple data sources, a multi-temporal and multi-dimension-
al heterogeneous structure [13]. Therefore, powerful technological capabilities are 
required for its handling and analysis together with advanced analytical methods 
that support multiple data models and reduce data transfer, as well as advanced 
visualization techniques that can be easily integrated into different graphical user 
interfaces, including web systems and mobile devices [11].

New methods and algorithms, research infrastructures, and computational re-
sources are useful for preserving, compressing, grouping, and modeling EO data 
during analysis, interpretation, and visualization in a variety of applications [11]. 
Likewise, the need to establish national reference data has motivated countries to 
strengthen their capacities to collect and analyze data, and they have tested propos-
als aligned with their existing planning instruments, their sustainable development 
strategies, and their procedures for information production.

EO technologies are evolving at a fast pace which makes it harder for the 
non-specialists to remain up to date with new tools and techniques, and the new 
skills these might imply. Not acknowledging the benefits that spatial technologies 
bring to sustainable development could impede them being used to their full poten-
tial [14, 15], therefore, the development of geospatial tools that are easy to imple-
ment and use are essential so that non-specialists can obtain information ready for 
analysis, without the need to participate in its processing.

In emerging countries, the lack of trained and experienced personnel to produce 
information derived from satellite data with local resources, provide user support, 
and generate applications from space technologies can be a barrier to expanding the 
use of satellite technologies.

Other obstacles to the wider use of satellite technologies include restricted ac-
cess to data, lack of standardization, data that is not fit for purpose, lack of data 
ready for analysis, and insufficient frequency of observations [14]. However, lever-
aging satellite data has helped many developing and emerging countries address 
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some of their most pressing challenges. The 2019 survey conducted under the aus-
pices of the African Association for Remote Sensing of the Environment showed that 
the success of geospatial information and EO depends on three factors [15]:

1) a well-informed public sector to develop a strategy and an architecture for 
geospatial data,

2) highly developed academic institutions to support capacity development in 
EO and geoinformation sciences, in engineering and space technology,

3) a prosperous private sector that serves as an engine for economic growth.

3. Data Cubes as a Response to Challenges  
in the Use of Satellite-based Earth Observation

In recent years, there has been a global move from satellite operators towards 
producing more usable datasets, to reduce the work required before mining and an-
alyzing. However, the large amount of data that is available requires to be migrated 
from the traditional approach of users who downloaded data and did local process-
ing towards high-performance computing data centers (local or cloud-based), using 
Big Data processing tools [16].

Various implementations of platforms capable of analyzing EO data reflect the 
growing interest in developing large-scale analytical tools allowing effective and ef-
ficient information retrieval [17]. A specific sub-group of such tools are referred to as 
data cubes or EO data cubes. Data cubes are revolutionizing the way users can work 
with EO data. To reduce the processing load on users, the generation of high-quality 
multidimensional arrays of satellite information is a fundamental requirement, as 
they minimize the time and scientific knowledge required to access and use satellite 
information. They reduce the barrier to generating geospatial information products 
ready to be analyzed by automating pre-processing steps to support the utilization of 
the growing volume of EO data, thus expanding the number of potential users [18].

The term EO data cube is a novel and often unknown concept; Strobl [19, p. 32.] 
defined a data cube as a data structure that “is based on regularly and irregularly 
gridded, spatial and/or temporal data with n dimensions (or axes) and characterized 
by the presence of the 6 faces”. In order to describe EO data cubes into meaningful 
and manageable parts, Strobl [19] identified six different aspects (Fig. 2); each of 
which regards one well-established data science domain. Strobl emphasized that to 
enable and facilitate the full interoperability of EO data cubes it is important to make 
sure all the views are adequately addressed and kept technology neutral [19].

Furthermore, a data cube is often compared to (or confused with) cloud-based 
processing platforms; to better characterize data cubes, it is important to differ-
entiate them from cloud-based platforms such as the Copernicus Data and Infor-
mation Access Services (DIAS), the Google Earth Engine (GEE) or Earth on Am-
azon Web Services. Cloud-based platforms often provide free and open access to 
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global EO datasets together with powerful analysis tools, yield fast results and allow 
to avoid the burden of data preparation; however, they lock users into a platform 
dependency [17]. Giuliani et al. [17] listed some of the identified challenges; most 
of these potential drawbacks can be tackled by utilizing EO data cubes, as Table 1 
describes.

Fig. 2. The data-oriented faces of the EO data cube (a);  
the functionality-oriented faces of the EO data cube (b)

Source: [19]

 a) b)

Table 1. EO data cube advantages over cloud-based processing platforms

Identified concern in cloud-based processing 
platforms

How this concern may be tackled by EO 
data cubes

Users do not know whether a given platform 
will be sustained or evolved in the future

Users can install and maintain an open-source 
solution on their own computing infrastructure, 
they may also keep any version they wish to, 
with no need to update

Limited time and spatial scale for analyses 
is provided

Data cubes provide processing scalability 
(depending on the computational infrastructure 
available)

Only cloud-based computing is provided 
(no options for hubs or local computing solutions)

Data cubes provide hardware flexibility

Users are requested to upload their analytical 
processing and even local data, while data 
download is discouraged or not even allowed

Users can install and use on their own computing 
infrastructure and develop solutions that 
allow to work in closed environments, helping 
to guarantee data confidentiality and providing 
a further sense of ownership.
(Furthermore, avoiding commercial and internet 
dependence can help to fulfill national data 
security standards)

Platform providers require the right to “own” 
all the data utilized on the platform
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Users get only those datasets that providers offer, 
limiting data interoperability

Users are allowed storing different type of data. 
Data cubes support an efficient and joint use of 
multiple datasets, enhancing their interoperability 
and complementarity

Data are often not ready to be analyzed Data cubes design favors the use of higher 
quality datasets (analysis ready data or ARD), 
which can enhance interoperability and generate 
better results

In particular, the ODC aims to meet the challenge of Big Data as a new ap-
proach to store, organize, manage, and analyze EO data, therefore it is now consid-
ered a promising technology for conducting time series analysis of large satellite 
datasets. Several countries and even regions (Africa, Pacific) are implementing the 
ODC open-source solution where the open-source nature of the ODC has been an 
important factor in the selection of this tool, as well as the ability of the ODC to be 
deployed on various computing infrastructures ranging from national supercom-
puting facilities to numerous commercial cloud infrastructures, which has allowed 
the establishment of sovereign operational capabilities that can be controlled and 
managed in the country [15, 20].

4. Implementation of the Open Data Cube in Mexico

In Mexico, the National Institute of Statistic and Geography (Instituto Nacional 
de Estadística y Geografía – INEGI) has the task of monitoring the environmental, 
socioeconomic, and demographic phenomena that occur throughout the country. 
Particularly, the National Subsystem of Geographic and Environmental Information 
(Sistema Nacional de Información Estadística y Geográfica – SNIEG), in its geograph-
ic component, generates data on natural resources, among which are the National 
Land Use and Vegetation Map (Fig. 3) and the National Water Bodies Map (Fig. 4), 
which are part of the Spatial Data Infrastructure of Mexico [21].

The land use and vegetation information has been generated through various 
methodologies that use inputs with multi-year temporal resolutions and mostly 
manual and exhaustive processes in the territory, classifying satellite images from 
various sources. Since 1968, INEGI has produced and disseminated the different se-
ries (versions) of the Land Use and Vegetation Map, scale 1 : 250,000 which contain 
the location and distribution of agricultural land use, of natural and induced vege-
tation in the country, of livestock and forestry use, and other uses that occur in the 
territory related to plant cover [22]. This map is updated every 5 years, and to date 
there have been seven series (or versions).

Table 1. cont.



138 P. Merodio Gómez, A. Ramírez Santiago, O.J. Juárez Carrillo, F.J. Jiménez Nava

Fig. 3. Example of the national Land Use and Vegetation Map (series VI),  
scale 1 : 250,000

Source: CONABIO (http://www.conabio.gob.mx/informacion/gis/)

Fig. 4. Example of the local Water Bodies Map, scale 1 : 50,000
Source: CONABIO (http://www.conabio.gob.mx/informacion/gis/)
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The spatial resolution varies in each series since they have been made with sat-
ellite images from different satellites. Series I was generated with aerial photographs 
and in situ data collected with a completely cartographic approach with output from 
printed maps. For series II, the methodology was changed for the use of printed space 
maps. From series III to series VI, the entire process was carried out under a Geo-
graphic Information System environment and the use of satellite images was imple-
mented [22, 23].

Series III, was carried out through the photointerpretation of Landsat ETM satel-
lite images of 30 m resolution (of the year 2002); series IV used Spot 5 satellite images of 
10 m resolution (of the years 2007 and 2008); series V used Landsat TM5 satellite imag-
es of 30 m resolution (of the year 2011) were used; series VI (Fig. 3) used Landsat TM8 
satellite images of 30 m resolution (of the year 2014) [22]; and finally, series VII used 
images from Mexican Geospatial Data Cube (MGDC) together with MGDC products, 
such as the Landsat geomedian. All these versions were supported by previous infor-
mation (bibliographic and cartographic) and information obtained in situ [23].

Traditional methodologies present various areas of opportunity such as the au-
tomation of the satellite image classification processes, as well as the use of timely 
information that allows the creation of national continuums with temporal homo-
geneity. However, incorporating new methodologies that allow the generation of 
large volumes of highly structured data entails technological challenges and techni-
cal capabilities for analysts. For this reason, the adoption of new technologies such 
as the ODC is essential, which aims to solve both needs, guaranteeing an intelligent 
management of satellite data that allows maximizing computational capacities and 
bringing information to the end user in a format ready for analysis, thus allowing 
the generation of information in a timelier manner [24, 25].

INEGI, in collaboration with Geoscience Australia, implemented the Mexican 
Geospatial Data Cube (MGDC) using ODC, which facilitates access, use and process-
ing of time series satellite images, pixel by pixel, throughout the national territory, thus 
allowing the selection of a region or period of interest specifying location and date of 
collection. Currently, MGDC imagery collection consists of more than 132,000 Land-
sat scenes with their metadata. There is a collection of images of the entire national 
territory from 1984 to 2021 (and part of 2022) with monthly updates.

The images that are incorporated into a data cube have been corrected and 
provide comparability in time of their observations at the pixel level, these correct-
ed images referred to as Analysis Ready Data (ARD) [26]. For the specific case of 
the MGDC, around 86.4% of the images in the collection correspond to NASA’s ARD, 
that is, Quality Level 1 (T1) images from NASA Collection 1, 13.2% correspond to 
Quality Level 2 (T2) and 0.4% to real time (RT) quality [26]. Each pixel in an image 
represents a 30 m × 30 m region; the projection parameters (Albers) are defined to 
better fit INEGI’s information production goals [20, 24].

The MGDC architecture consists of a set of Python libraries, a PostgreSQL data-
base, and a collection of organized (indexed) Landsat images; all these resources are 
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hosted locally on INEGI’s servers. The functions of the libraries allow cataloging, in-
dexing, and processing of the thousands of images ordered from the collection based 
on the format they have when they are downloaded from the space agency. The data-
base does not store the images but rather the path where each one is located within the 
designated local storage unit (to which the servers have access). In addition, the data-
base also records the metadata of each image (source, date of observation, geographic 
region it covers, spectral bands, quality level, etc.), which is relevant when generating 
derivative products. Thus, MGDC facilitates the handling and access to large volumes 
of satellite images through a programming interface based on Python [21].

In practical terms, the data structure that is generated by sorting a set of satel-
lite images with this tool is a massive dense (no void cells) array of raster data. This 
means that, in terms of access, all the images in MGDC are a single multidimension-
al structure, described by several axes; coordinates in these axes are the mechanism 
that allows access to the data; this coordinate system (x, y, date, band) is homologat-
ed for all data; hence, the location of the pixels becomes independent of the source 
image. In order to include different sensors (like Sentinel-2), more complex design 
decisions need to be made to either combine both data sources into a single cube 
(sacrificing information as Sentinel-2 provides more bands), or to keep them apart in 
different cube instances [21]. Either way, the spatial resolution is compatible (10 m) 
in theory: each Landsat pixel represents 9 Sentinel-2 pixels.

As of March 2022, the MGDC imagery collection contains more than 132,000 
scenes from all over the national territory. And around five hundred images more 
are collected every month, which together are approximately 500 GB in size; this 
represents around 6 TB of annual storage. The volume of the complete image col-
lection amounts to 90 TB in its unzipped version. However, MGDC optimizes its 
storage (converting GeoTIFF images to netCDF), reducing its volume by one third 
without losing information.

MGDC is designed to produce an ever-expanding range of analysis- and/or deci-
sion-ready derivative products. The implementation of the systematic generation of 
products like the Normalized Difference Vegetation Index (NDVI) and the Modified 
Normalized Difference Water Index (MNDWI) to the context of Mexico is currently 
being tested [27]. That is, with the implementation of this platform, INEGI processes 
(essential for national methodologies) can evolve to include the analysis of a region 
of interest or the entire territory, not only using an observation from one point in 
time, but with historical data that can allow time-series analysis to observe, monitor 
and understand its behavior over time. In addition, it will help develop capabilities 
in remote sensing, data science, process engineering and software architecture, as 
well as infrastructure capabilities that include efficient access to satellite imagery, 
broadband to collect large and frequent data, and Big Data technology to store and 
process satellite information [28].

Since MGDC is a recent and disruptive implementation in INEGI, a few obsta-
cles have been encountered by the technical team. The objective of this article is not 
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to provide a harsh assessment of the tool, as the personnel involved are currently in 
a ramp-up stage to build and strengthen technical skills.

However, for the sake of completeness, some of the challenges found in the use 
and implementation of the MGDC need to be listed:

 – MGDC is difficult to install. The flexibility of the tool results in very particu-
lar installation pipelines.

 – The use of the tool through the API to analyze the existing data is easy enough, 
however, the integration of new raster data products (Sentinel, MODIS) re-
quires expert knowledge, so far there is great documentation on the indexing 
of Landsat imagery, but to expand to and leverage the potential of different 
data sources there is a need to “define” the products; very different skills are 
needed to achieve this.

 – Another challenge is that despite the nature of this tool in facilitating the use 
of large collections of images, the lack of (or insufficient) interoperability of 
the software with Big Data ecosystems of common use to data scientists and 
often required for handling large volumes of data such as Apache Spark.

5. Mexican Geospatial Data Cube Application  
for Measuring SDG Indicators 6.6.1 and 15.1.1

In Mexico, the National Statistical and Geographic Information System (SNIEG), 
represented in the Specialized Technical Committee for the SDG, has the production 
of information to measure progress in public policies associated with the SDG as one 
of its objectives. SNIEG, through INEGI and its Specialized Executive and Technical 
Committees, establishes the objectives and strategies for the generation of informa-
tion [29, 30]. In this way, the indicators (6.6.1 and 15.1.1) analyzed in this article 
were selected based on the coincidence of both the shortlist of indicators developed 
by WGGI and the list of indicators developed by SNIEG, specifically, those corre-
sponding to the National Subsystem of Geographic and Environmental Informa-
tion, developed in the Department of Natural Resources and Environment of INEGI.

Indicator 6.6.1:  
Change in the extent of water-related ecosystems over time
Target 6.6 aims to protect and restore water-related ecosystems. Particularly, 

indicator 6.6.1 aims to understand how and why these ecosystems are changing in 
extent over time.

This indicator includes five ecosystem categories:
1) vegetated wetlands,
2) rivers and estuaries,
3) lakes,
4) aquifers,
5) artificial waterbodies.
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The measurement of all the components of Indicator 6.6.1 is important to allow 
informed decisions towards the protection and restoration of water-related ecosys-
tems. However, due to a lack of data within countries to support monitoring of the 
Indicator, UN Environment Programme proposed a global methodology, one which 
is internationally recognized, and which combines national data from ground sam-
pling and global data based on EO, resulting in global datasets with extensive spa-
tial and temporal scale which are internationally comparable [31, 32].

Statistical and geospatial data on permanent water, seasonal water, reservoirs, 
wetlands, mangroves, and lake water quality are available on the SDG 6.6.15 data 
portal. It is important to mention that not all the data series represented on the site 
use the same reference period, because the recorded observations are captured by 
different satellites, according to the type of ecosystem related to the water that is 
being observed (Tab. 2) [32].

Table 2. Data from Earth observations 

Ecosystem Unit Features

Lakes & Rivers 
(permanents)

surface area Annual and multi-annual changes in permanent water area 
(1984–present) statistics for new and lost permanent water 
(2000–2019) statistics aggregated at national, sub-national & basin 
scales

Lakes & Rivers 
(seasonal)

surface area Annual and multi-annual changes in seasonal water area 
(1984–present) statistics for new and lost seasonal water 
(2000–2019) annual seasonality statistics for periods: 0–1, 3–6, 
7–11 months statistics aggregated at national, sub-national 
& basin scales

Reservoirs surface area Annual and multi-annual changes in reservoir surface area 
(1984–present) statistics for new and lost reservoir area 
(2000–2019) statistics aggregated at national, sub-national & basin 
scales

Mangroves surface area Annual and multi-annual changes in mangrove area (2000–2016) 
statistics aggregated at national, sub-national & basin scales

Wetlands surface area Wetlands area (baseline area comprised of data btw 2016–2018) 
statistics aggregated at national, sub-national & basin scales 
wetlands area changes will be included starting in 2021/2022

Lakes water quality Monthly, annual, and multi-annual measurements of trophic 
state and turbidity for 4200 lakes globally (at 300 m resolution)

Source: [32]

5  www.sdg661.appp.
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Some satellites, such as Landsat, have data from the early 1970s, allowing the 
measurement of changes in open water bodies (lakes). However, there are satellites 
that have been incorporated more recently, such as the European Sentinel and sev-
eral Japanese satellites, which allow the capture of images and data for other types 
of ecosystems and parameters related to water.

Global data for rivers and groundwater are not yet available at useful spatial 
and temporal resolutions to be incorporated into the indicator 6.6.1 methodology, so 
these data should continue to be provided from models or ground measurements.

The global results for indicator 6.6.1, are available on the UN Water portal, 
which show the gain or loss in the extent of the water body compared to the estab-
lished baseline period (2001–2005) [33].

On the other hand, the national methodology based on the MGDC, enabled the 
generation of national-level products based solely on the analysis of time series of im-
ages [34]. To measure this indicator, two data sources were used: the National Water 
Bodies Map [34] and MGDC-based product called Landsat Surface Water Classification 
Index from Space (ICASE), an adaptation of WOfS (Water Observations from Space) 
methodology. The National Water Bodies Map is derived from the set of national topo-
graphic data at scale 1 : 50,000 made with SPOT 5, SPOT 6, Geoeye and WorldView 
satellite images (spatial resolution from 1 m to 10 m). The Landsat ICASE is a geospa-
tial analysis product that provides information on the presence of surface water [27].

The ICASE consists of annual national mosaics, from 1982 to 2020; each ICASE 
mosaic maps the level of the presence of water identified in Landsat satellite images, 
through a regression tree that considers values from the spectral bands, both as in-
dividual bands and in combination [27].

Through this process, surface water is detected using an automated water map-
ping algorithm. The number of times water is detected for each location is summed 
through time and then compared to the number of clear observations of that loca-
tion. The result is a percentage value of the number of times water was observed at 
that location, providing a nationally consistent tool to complement the studies of 
surface water dynamics, both spatially and temporally [35].

The 2015 ICASE mosaic (derived from Landsat 7 and 8) was obtained by pro-
cessing all the 2015 images available on MGDC. Quality indicators considered in this 
method are saturation of pixels, contiguity of bands, the clouds or cloud shadow 
and the shadow of the terrain [27].

The 2015 mosaic was one of the first ICASE mosaics generated. To observe the 
possible uses of this mosaic (or an annual series of it) for measuring indicator 6.6.1, 
four lakes were selected in central western Mexico (Yuriria, Cuitzeo, Pátzcuaro and 
Zirahuén), where it was determined that the water surface is 10% less than the 2010 
reference data in the National Water Bodies Map (Fig. 5). Experts analyzed these 
outcomes and resolved that the information was consistent with the status of the 
water bodies known from different sources. Hence, the 2015 mosaic and the ICASE 
algorithm was considered fit for further research.
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Fig. 5. National Water Bodies Map for 2010, scale 1 : 50 000 (area: 44 798 ha)  
(2010 Landsat image background) (a). ICASE Assessment for 2015 (area: 40 315.40 ha)  

(2015 Landsat geomedian background) (b)

Water not detected
Water detected in 1% of the observations
Water detected in 5% of the observations
Water detected in 20% of the observations
Water detected in 50% of the observations
Water detected in 80% of the observations
Water detected always

a)

b)

Based on the positive feedback provided from thematic experts in the previous 
exploration of this product, more ICASE mosaics were generated. In the later study, 
the aim was to measure the annual change in the surface of Chapala Lake from the 
period 1985 to 2019, which is one of the most important lakes in Mexico. The water 
pixels were quantified and converted to surface values (in square kilometres) in or-
der to showcase the value of a tool such as the MGDC to decision-makers (Fig. 6).
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Fig. 6. Graphic of annual changes [km2] in the surface of Chapala Lake using Landsat ICASE 
(1985–2019) and reference images for years 1985, 1990, 1995, 2000, 2005, 2010 and 2015.  

Each ICASE mosaic is derived from annual sets of Landsat images in the MGDC
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Indicator 15.1.1:  
Forest area as a proportion of total land area

This indicator provides a measure of the relative extent of forest in each coun-
try and is a key element for forest policy and planning in the context of sustainable 
development. Total forest area is the total land spanning more than 0.5 ha with trees 
higher than five meters and a canopy cover of more than 10%, or trees able to reach 
these thresholds in situ. And the total land area is the total country area excluding 
area under inland waters and coastal waters [36].

At the national level, many countries carry out their forest area assessment at 
infrequent intervals, which is why global data from EO helps countries update their 
forest area estimates more frequently [35]. The Food and Agriculture Organization 
of the United Nations (FAO) collects data on forest area at regular intervals (current-
ly every 5 years) through the Global Forest Resources Assessment (FRA), as well as 
collecting data on land area through the annual FAO Questionnaire on Land Use, 
Irrigation and Agricultural Practices. These data are supplemented by national sta-
tistical data and other official government data [37, 38].

The global results for indicator 15.1.1 are available on the FAO portal on Global 
Forest Resources Assessments (FRA), which provides essential information for un-
derstanding the extent of forest resources, their status, management and uses [38].

The results for Mexico from the FRA 2015, indicate the total forest area from 1990 
to 2015. In addition to the data from FAO, FAR 2015, the dissemination platform of 
the SDG Global Indicators Database shows the results for Mexico on the total forest 
area and the forest area as a proportion of the total land area [38].

To measure this indicator at the national level, data from the INEGI national 
Land Use and Vegetation maps are used. These data sets are the key to observe 
changes in land use, the effectiveness of the protection of natural areas, the increase 
in agricultural areas and the urbanization, among others.

INEGI’s series of mosaics called Landsat geomedian is the result of searching 
for the single image that best represents all the Landsat images of the same year 
which capture a portion of the national territory and that are available in MGDC.

There are several methods for generating summary mosaics of national cover-
age. Mechanisms based in pixel time series statistics, consider the pixel sequence for 
each band over time and calculates some statistics that summarize the observations 
to create an image composite. A common practice is to estimate a one-dimensional 
statistic for each of the bands, however, it does not preserve spectral relationships, 
which is desirable in cases where the image resulting will be used as a starting point 
for analytical processes [39].

The geomedian is a composition-based approach at the pixel level that takes 
a collection of satellite images from a specific time period (defined by the user) 
and “compiles” them into a single image. In Figure 7 the process for obtaining the 
geomedian from the collection of images to the construction of mosaics is presented.
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This algorithm is used to perform a multivariate statistical summary (similar 
to a median value) for all the observed values of the same pixel in an indicated 
period (Fig. 7: Temporal stack of multi-band images). Hence, the application of this 
algorithm produces an image composed of “summary pixels,” which maintains spa-
tial consistency, and by working with all the pixel bands at the same time, it also 
preserves the ratio between these values. Filtering out cloud and noisy pixels using 
quality mask layers (Fig. 7: Mask, Clouds, Shadows, Saturated), this image composite 
provides a good representation of a typical observation that lacks outliers and with 
reduced spatial noise and maintains spectral relationships among the bands [39].

After applying the algorithm to each pixel time-series, the “summary” pix-
els (Fig. 7: Geometric median (on pixel time-series)) are integrated into a single im-
age (Fig. 7: Mosaic composite images); it is worth mentioning that the computational 
task was divided into smaller mosaics (Fig. 7: 4000 × 4000 pixel multi-band compos-
ite image) prior to this integration into a single image.

The final product is a mosaic of multispectral images that represent the character-
istics of the surface at a specific period. INEGI’s particular series has one country-wide 
geomedian image per year for the last three decades subdivided into 144 mosaics to 
facilitate distribution of the data (Fig. 7: National multi-band mosaic) [26].

Mexico has a multi-temporal vision of the distribution of vegetation and land 
use, which makes it possible to observe changes in uses, effectiveness of the protec-
tion of natural areas, increase in agricultural areas and urbanization, among other 
variables that are relevant for achieving sustainable development.

Fig. 7. Production of a Landsat geomedian mosaic in INEGI
Source: [26]
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One of the advantages of using MDGC for the calculation of NDVI, is that it 
allows us to learn the behavior of vegetation for a whole year. For the purpose of 
mapping land use and vegetation, this approach provides a more representative 
classification for each pixel, unlike what could be obtained using a single value of an 
original image, which is a true value but only observed on one certain date.

An initial exploratory study of the application of the MGDC-based methodology 
can be seen in Figure 8, which shows the results of visually comparing two false-col-
or images of the Montes Azules area and the Marqués de Comillas Area, which are 
divided by the Usumacinta River. Montes Azules area was declared a Natural Pro-
tected Area in 1978, the river marks the limit of the protected area. This study con-
sisted in searching for an MGDC image of the region from a time close to 1978 in 
order to evaluate the status of the vegetation. The selected image, taken as an initial 
reference, is from 1986 (the MGDC collection does not have data from 1978); this im-
age is a single observation (Landsat 5) (since there was not enough available images 
to produce a geomedian). The image used to compare it with was the 2017 geomedi-
an, which is cloud-free by design (its construction used Landsat 7 and 8 data).

Fig. 8. Changes in vegetation cover and effectiveness of the Montes Azules Natural 
Protected Area in southeastern Mexico from 1986 (a) to 2017 (b), shown in “false color” 

spectral combination to enhance the presence of vegetation

a)

b)
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Once this study helped to reveal the potential of the MGDC and its products to 
evaluate public environment policy, INEGI resolved to operationalize the platform 
and to publish derived information products (geomedian and ICASE so far).

6. Discussion

The data reported at the global level for monitoring the SDG are relevant and 
useful for making comparisons on sustainable development between countries. In 
addition, when a national data set is not available, global data sets offer a comple-
mentary alternative to produce information that would not otherwise exist. Howev-
er, to focus on national development policies and advance the 2030 Agenda, more 
frequent data and higher spatial resolution are needed.

In situ information provides more detailed and high-quality data, however, fre-
quently updating this type of information can incur significant costs in both tempo-
ral and monetary terms. In this way, satellite-based EO provide the opportunity to 
build consistent data sets that are constantly updated and allow for better monitor-
ing and measurement of the SDG indicators.

One way to reduce the barriers that some countries face in the inclusion of satel-
lite-based EO technologies is to implement open source technology solutions, which 
make it possible to store, organize, manage and analyze data from EO more easily, 
such as it is the ODC which has the ability to be deployed in various computer in-
frastructures, which has allowed the establishment of operational capabilities that 
can be controlled and managed in the country, revolutionizing the way users can 
work with data, since it has the potential to generate ARD, thus reducing the pro-
cessing load.

Specifically, the MGDC’s image collection only consists of Landsat images, 
which were provided directly to INEGI on hard drives by NASA and USGS person-
nel in order to avoid the task of downloading huge volumes (90 TB) and allow for 
a faster and more complete implementation. Arrangements on the future incorpo-
ration of Sentinel-2 to the cube are in place and the storage resources are considered 
within the Information Technology plan from INEGI. However, including a second 
data source involves technical and design decisions as well a huge effort to down-
load and preprocess the data, since in this case, Sentinel-2 images are not available 
for download in the level of quality required. When the development of the ODC 
began, the most usual sensor in this sort of technology was Landsat, very few others 
had managed to feed Sentinel-2 data into a data cube instance.

The development of SDG indicators based on EO data processed using tools 
such as the ODC are strong examples of how to solve the key challenge of providing 
timely information as the basis for sound, evidence-based decision making. In the 
specific cases of the selected indicators, the overestimation of the values calculat-
ed for indicator 15.1.1 by the global methodology has been resolved thanks to the 
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incorporation of the knowledge of local specialists, the inclusion of field informa-
tion, and the use of satellite images with higher spatial resolution.

Although INEGI’s National Water Bodies Map at a 1 : 50 000 scale provides use-
ful information for monitoring indicator 6.6.1., the integration of data derived from 
the MGDC in its methodology will allow the development of sub-indicators for the 
rainy season as well as for the dry season.

For this, a broader temporal assessment and sub-indicators of seasonality are 
needed due to the dynamic nature of the water. Studies can be carried out in areas of 
interest and annual monitoring. Although it is proposed to calculate indicator 6.6.1 
every 3 or 5 years with this methodology, the product allows an annual product 
with an additional seasonal analysis (dual).

These initial efforts using the National Water Bodies Map to evaluate ICASE 
will play a significant role in showing the added value of EO technologies and in the 
adoption of automatic processes in official activities.

7. Conclusions

The implementation of new data sources, technologies, and processes are in-
creasing the production and availability of information necessary for more efficient 
monitoring of the SDG indicators. However, it is not always easy for NSOs to ana-
lyze data from EO, as well as incorporate large volumes of data into their method-
ologies, due to a lack of infrastructure and capacity, hence the importance of devel-
oping and implementing tools that allow easy management and efficient analysis of 
data, such as the MGDC.

The recent implementation of the MGDC as an institutional and transversal 
platform in Mexico further recognizes the valuable contribution of satellite EO to 
the SDG. The adoption of the MGDC allows to further harness the potential of global 
data sets by providing a developing country with the ability to build custom data 
sets based on those globally available and thus take advantage of the local knowl-
edge to evaluate different products.

It is important to mention that the products generated by the MGDC, in addi-
tion to their use in the measurement of SDG indicators, will be used to complement 
the traditional mapping of natural resources, which has been delivered prepared 
and updated by INEGI for 50 years. The methodological design of this activity has 
always included field verification, which will also be used for MGDC products. In 
this sense, INEGI is working to ensure that the products generated by the MGDC 
are complemented and integrated with a wide range of on-site validation data (field 
verification) to ensure that derived products are robust and improve the monitoring 
of public policies and the SDG.

Geospatial information (including EO) and statistical data can be integrated in 
support of national priorities and global goals, not only facilitating the monitoring 
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of SDG indicators, but also the assessment of public policies and decision-making at 
the national level based on evidence. In this way, this open tool has given emerging 
countries ownership of these global data sets and the possibility to apply them for 
their specific and more localized studies, and at the same time to address interna-
tional commitments, such as the indicators of the 2030 Agenda that can be support-
ed by EO.
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