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Abstract: The availability of Sentinel satellites for providing open data with optical and 
SAR imagery leads to better opportunities related to Earth surface mapping 
and monitoring. Recently, optical fusion with radar data has shown improve-
ment in classification quality and the accuracy of information acquired. In this 
setting, the main objective of this research is to monitor the environmental im-
pact of an open-pit mine on water, vegetation, and non-vegetation areas by ex-
ploring the single and combined use of Sentinel-1 and Sentinel-2 data. The data 
utilized in this paper were collected from the European Space Agency Coper-
nicus program. After selecting the Selenica region, we explored the products 
in the Sentinel Application Platform. According to our data, Sentinel-2 misses 
the small water ponds but successfully identifies the river and open-pit areas. 
It mistakenly identifies urban structures and cloud areas as non-vegetated and 
does not identify non-vegetated areas which correspond to mining operation 
areas. Sentinel-1 identifies very small water ponds and delivers additional in-
formation in the cloudy areas, but misses a part of the river. Alongside the 
strong contribution in identifying the vegetation, it also roughly identifies the 
non-vegetation areas of mining operations.
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1. Introduction

The term “remote sensing” means sensing the surface of the Earth from space 
by utilizing the features of electromagnetic waves emitted, reflected, or diffracted 
by the sensed objects with the purpose of the exploration and protection of the 
environment. There are two types of remote sensing technology: active and pas-
sive remote sensing. Passive sensors use the sun’s energy and detect the reflected 
energy from the surface of the Earth. In contrast, active sensors first emit energy 
and then detect and measure the electromagnetic radiation backscattered from the 
objects [1, 2].

The state of the art in the research has progressed impressively in the last de-
cade. According to our literature review, one of the alternatives described for en-
hancing the accuracy of final results is the inclusion of optical indexes of vegetation, 
soil, and water to increase the training data range and improve overall efficacy [3–6]. 
Multispectral Sentinel-2 data are mainly used through the application of a threshold 
on spectral indices that have been proposed worldwide: the Normalized Difference 
Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), and the 
Modified NDWI (MNDWI) to classify water pixels, among others [7–9]. On the oth-
er hand, the NDWI index can be used mainly for clear water spectra, and is thus 
limited in terms of contaminated water bodies (a variety of spectra) like the mining 
environment [10].

Over the last decade, several studies have highlighted the potential key role 
of satellite data in ecology, particularly the Normalized Difference Vegetation In-
dex (NDVI) since potentially it is a cheap, systematic, repeatable, and verifiable 
monitoring method for environmental management [11]. Specifically, it has recently 
been proposed that monitoring remotely assessed ecosystem functional attributes 
through NDVI provides an excellent opportunity to assess the effectiveness of man-
agement practices and the effects of global environmental changes [12]. Some stud-
ies focus on the types of mine vegetation and the relationship between the growth 
of the mine vegetation and the surrounding soil and heavy metals. They have also 
monitored the situation of mine environmental restoration [13–15].

The availability of the Sentinel satellites for providing open data with optical 
and SAR imagery leads to better opportunities related to Earth surface mapping 
and monitoring. A general definition of image fusion is given as: “Image fusion is 
the combination of two or more different images to form a new image by using 
a certain algorithm” [2]. Although radar polarization may be a barrier in identifying 
some features, this product does not have the presence of atmospheric obstacles, 
such as clouds [16–18]. Recently, data fusion processes of optical with radar prod-
ucts have been applied to improve classification quality and accuracy. The proposed 
mapping approach has the main advantages of combining the all-weather capabil-
ity of the radar sensor with the spectrally rich information from the visible-near 
infrared spectrum. The synergetic use between optical and radar data is not only 
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a recognized alternative for urban areas studies [19–21]. Analyzing spatio-temporal 
characteristics of land-use change are essential for understanding and assessing the 
ecological consequence of mining [22]. Moreover, the effect of image fusion has an 
impact on vegetation index quality [23, 24]. Results from many researchers show 
that Sentinel-1 cross-polarized VH backscattering coefficients have a strong vegeta-
tion contribution and are well correlated with the Normalized Difference Vegetation 
Index (NDVI) values retrieved from optical sensors [25–28].

In this setting, the main objective of this study was to evaluate the environ-
mental impact of the open-pit mine in water and non-vegetation area by exploring 
the information gained by the combination of Sentinel-1 and Sentinel-2 data. The 
specific objectives consist of applying histogram analysis for the Sentinel-2 part and 
scatterplot analysis for Sentinel-1 part in the collocated image.

The main hypothesis is that we achieve more detailed terrain information by 
means of the combination of Sentinel-1 and Sentinel-2 data.

2. Materials

2.1. Study Area

The Selenica bitumen mine is located in Selenica county and Vlora district in 
Albania (Fig. 1).

Fig. 1. Location of the Selenica open pit mine in Albania
Source: Google Maps
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The history of the Selenica deposit of natural bitumen in Albania spans over 
2000 years. The natural bitumen originating from the deposit, named Seleniz-
za®SLN, belongs to the group of natural asphaltites which include Gilsonite, Trini-
dad, etc. It is an additive for modifying road paving bitumen and creating high-per-
formance asphalt mixes. The Selenica mine is a rare deposit that contains a large 
amount of natural bitumen. Ore extraction is performed via open-pit mining using 
excavators, and the product is practically unalterable in the environment. It is not 
considered dangerous for terrestrial plants and aquatic organisms [29].

2.2. Data Set
The data utilized in this paper were collected from the European Space Agen-

cy (ESA) Copernicus program, which comprises five satellite families, each one fo-
cusing on a specific aspect of the observation of the earth. For this study, we have 
used data from Sentinel-2 and Sentinel-1 missions, and for accessing Sentinel data, 
we have used the Copernicus Open Access Hub [30, 31].

Sentinel-1 is a radar satellite launched by the ESA operating at C-Band Synthet-
ic Aperture Radar (SAR) instrument operating at a center frequency of 5.405 GHz 
comprises a constellation of two polar-orbiting satellites, operating day and night 
performing C-Band synthetic aperture radar imaging. A radar image results from 
the reconstruction of the echoes recovered in the antenna after the emission of mi-
crowave pulses which is called backscattering. The radar image formation from the 
recorded echoes is done in the sensor reference system composed of the azimuth 
and range axis. The azimuth axis is the direction along which the satellite travels, 
while the range axis is the direction across the satellite travels, the beam projection. It 
measures the intensity of the returned signal, which was actively sent to the Earth’s 
surface. It supports operations in single (HH or VV) or dual polarization with four 
acquisition modes, and the products are SAR level-0, Level-1 SLC, Level-1 GRD, and 
Level-2 OCN. This allows the mapping of physical characteristics, such as rough-
ness, moisture, and structure of the surfaces. Furthermore, radar images can also be 
acquired through cloud cover and independent of daylight.

Sentinel-2 is a multispectral satellite operating in the visible and infra-red 
spectrum (nanometer scale). The Copernicus Sentinel-2 mission comprises a con-
stellation of two polar-orbiting satellites placed in the same sun-synchronous orbit, 
phased at 180° to each other. It is a passive sensor that measures the energy emitted 
from the Earth’s surface in 13 separate bands at three different spatial resolutions 
(10, 20, and 60 m). The spatial resolution depends on the particular spectral band 
and requires daylight and cloud-free conditions.

2.3. Extraction of Data
In this paper, we have searched in the Copernicus Access Open Hub for the 

sensing period 1.06.2020 to 30.06.2020, for Sentinel-1 product type GRD, sensor 
mode IW while for Sentinel-2 product type S2MSI2A, cloud cover [0 TO 2], and we 
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have found two images which cover Selenica region (Fig. 2). There was a difference 
of eight days since the acquisition period for the Sentinel-1 and the Sentinel-2 imag-
es. However, it was hypothesized that both indices were obtained at the same water 
and vegetation phenological status.

3. Methods

Our method consists of combining the two scenes for using complementary 
information using the collocation algorithm in the Sentinel Application Platform.

3.1. Preprocessing

After selecting the region of interest for our study (the Selenica region), we 
explored the Sentinel-1 and Sentinel-2 products in the Sentinel Application Plat-
form (SNAP), which is a common architecture for all Sentinel Toolboxes [32]. The 
workflow for Sentinel-2 image consists of preprocessing only by creating a subset. 
The workflow for Sentinel-1 image was a more detailed preprocessing beginning 
with the creating a subset than performing radiometric calibration and speckle filter-
ing, conversion to decibel scale, and the terrain correction and calculation of a band 
ratio, which is optional [33].

3.2. Collocation

In a second stage, we collated the two images where there would be the fusion 
process of SAR data (in the master product) with optical imagery (in the slave product). 
When products were collocated, a new product was created, which contained a copy 

Fig. 2. Search in the Copernicus Open Access Hub for image products from Sentinel-1 and 
Sentinel-2 satellites covering Selenica region
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of all components of the master product, i.e., band data, tie-point grids, flag codings, 
bitmask definitions, and metadata. The band data of the slave products were resam-
pled into the geographical raster of the master product. The collocation algorithm 
requires accurate geopositioning information for both master and slave products. As 
for the master product, the tie-point grids, flag codings, and bitmask definitions of the 
slave products were copied. Slave product metadata were not transferred [32].

3.3. Analyzing the Histogram for NDVI  
in Sentinel-2 Part of the Collocated Image

To identify water bodies and non-vegetated areas in the Sentinel-2 part, we 
applied the NDVI, observed the histogram, and extracted our mask for the water 
bodies and the non-vegetated areas; we created these masks by using as threshold 
the NDVI value, using the Mask Manager and converting the mask into a layer. The 
NDVI was computed according to state of the art thresholds. It was computed by 
Band Maths as (NIR – Red)/(NIR + Red) where NIR and Red were considered the 
amount of near-infrared and red light, respectively, reflected by a surface and mea-
sured by satellite sensors. Normalized Difference Vegetation Index (NDVI) was used 
for vegetation cover analysis. This index measures primary productivity quantita-
tively, allowing an estimation of vegetation health [34]. Bare soil, cloud, snow, and 
concrete have NDVI values close to zero, while water has negative NDVI values [35].

3.4. Analyzing the Scatter Plot of the Polarization Bands  
in Sentinel-1 Part of the Collocated Image

To identify water bodies and non-vegetation areas in the Sentinel-1 part, we focused 
on analyzing polarization bands and their ratio. We used the scatter plot selecting the 
VH band for the x-axis and the VV band for the y-axis to identify water bodies. We used 
the fact that water surfaces reflect the microwave radiation away from the sensor, so the 
signal is low in that case. The scatter plot can also be used to extract thresholds for the 
ratio and the VH band to create a mask for the non-vegetation areas from the Sentinel-1 
band, considering that bare soil has a high VV-VH ratio and small VH and VV values.

3.5. Analyzing the Merged Image

To demonstrate the effects of combining Sentinel-1 and Sentinel-2, we com-
pared the above analysis in identifying water bodies and non-vegetation areas.

4. Results

Initially, we will provide the technical aspects of the combination of two images 
and then monitoring of water bodies as well as non-vegetation areas in the merged 
product.
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4.1. Technical Aspects for Merging Images

First we had to do the preprocessing, which only consisted in creating a subset 
for the Sentinel-2 image. Utilizing it, we only extracted one very small spatial part 
of the interest of the whole Sentinel-2 scene, which considerably reduced the file 
size and limited computation times. This can be done by the command “Raster-Sub-
set”. We extracted our subset from the geographic coordinates in the spatial subset 
tab. In contrast, in the Band subset tab, we only selected Band 1 to Band 12, exclud-
ing Band 8A as it is the narrow near-infrared band that is completely within Band 8. 
At that moment, it was necessary to know the coordinate reference system of the 
dataset. We would need it later for the projection of the Sentinel-1 scene (in our case 
here, it was the WGS 84/UTM zone 34N) (Fig. 3).

Fig. 3. Preprocessing for Sentinel-2 image: creating a subset

For the preprocessing of the Sentinel-1 image, a number of steps needed to be 
followed. To create the subset Sentinel-1 image, we used “Raster-Subset”. Similarly, 
as for the Sentinel-2 scene, we wanted to select our subset from the geographic coor-
dinates (we entered the same coordinates in the Sentinel-2 subset). In that subset, we 
noticed the mirror effect with the image that we downloaded from Copernicus Open 
Access Hub. This would serve as an input product for the next preprocessing step.

Radiometric calibration is necessary as recording conditions may vary between 
dates, so the radiometric calibration corrects these differences and provides com-
parable pixel values. We used radar-radiometric-calibrate. Radiometric calibra-
tion converts backscatter intensity as received by the sensor to the normalized ra-
dar cross-section (Sigma0) as a calibrated measure taking into account the global 
incidence angle of the image and other sensor-specific characteristics. The resulting 
product will appear to the left in our product explorer as _Cal product, and it will 
serve as input for the next step.

Speckles are the image’s salt and pepper grains that harden their interpretation. 
They result from random or noisy interference of all the single scatterers within one 
resolution cell. The speckle filtering by applying filters tries to reduce this noise by 



12 P. Belba, S. Kucaj, J. Thanas

spatial or temporal filtering. Extensive reviews and comparisons of speckle filters 
are provided by many authors [36–37]. We used the Lee Sigma filter published by 
Lee et al. [38] which uses two different window sizes to estimate the presence and 
intensity of speckle. It minimizes the speckle while maintaining sharp edges where 
they can be detected. To perform speckle filtering, we selected our subset calibrated 
product, and we used for “Radar-Speckle Filtering-Single Product Speckle Filter”. 
The resulting product will appear to the left in our product explorer as _Spk prod-
uct, and it will serve as input for the next step.

Conversion to decibel scale is ultimately not required, and it does not change 
the information content of the image, but it is advisable when image contrasts mat-
ter. If we select only one band and look at the statistics, we see that we have a very 
large range of possible pixel values; however, most of the pixels have very small 
ones. To stretch the distribution of values more evenly, which in turn then increases 
our contrast, we can convert that band into a logarithmic scale. We now have two 
virtual bands that are not written on the hard disk. However, these bands can be 
used as inputs for the next preprocessing step.

The last step is the terrain correction which applies a Digital Elevation Mod-
el (DEM) to the Sentinel-1 scene and corrects the geometric distance distortions 
which result from the topography and the recording geometry of the Sentinel-1 
sensor. To perform the correction, we go for “Radar-Geometric-Terrain Correc-
tion-Range Doppler Terrain Correction”. We chose our newly created decibel bands 
in the processing parameters, and for the map projection, we used a predefined co-
ordinate reference system. We selected the one we noted from the Sentinel-2 product 
(WGS 84/UTM zone 34N). Terrain correction will geocode the image by correcting 
SAR geometric distortions using the DEM and producing a map projected product. 
Only now do we not see the mirror effect of the image. Our resulting product will 
appear in the product explorer as _TC.

The optional calculation of a band ratio is the next step. To reduce the imbalance 
of the Bands (2 for Sentinel-1, 13 for Sentinel-2), a ratio is calculated between the two 
polarizations using the Band Math’s operator. Figure 4 presented the preprocessing 
for the Sentinel-1 image.

We used the command “Raster-Geometric-Collocation” to merge the prepro-
cessed Sentinel-2 and Sentinel-1 scenes. In the master product, we chose our Senti-
nel-1 product as it has highly precise geocoding due to the application of our digital 
elevation model. In contrast, for the slave product whose pixels were reprojected 
onto the coordinate system of the master product, we chose the Sentinel-2 prod-
uct with the bilinear interpolates resampling method. If we check the bands of our 
product, we have the 12 bands from the Sentinel-2 product and our decibel bands 
from Sentinel-1 product. For a first overview, we chose band 4 and 3 from Sentinel-2, 
and for the blue channel, the VV band from Sentinel-1 product. Depending on the 
different sensors’ recording directions and geometry, these do not completely over-
lap (Fig. 5).
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Fig. 4. Preprocessing for Sentinel-1 image: a) creating a subset (the whole image in the left 
and after the subset in the right); b) the radiometric calibration; c) the speckle filtering; 

d) conversion to decibele scale; e) the terrain correction; f) the calculation of a band ratio 
(optional). The mirror effect disappears after the terrain correction

a)

b)

c)

d)

e)

f)
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4.2. Monitoring of  
Water Bodies as Well as Non-vegetated Areas  
in the Merged Product

We aim to identify the water surfaces of the tailing ponds and the non-vegetated 
areas of the Selenica region. Initially, by doing these identifications independently 
for the Sentinel-1 (S1) and Sentinel-2 (S2) bands and then comparing both results in 
a second step where the added value becomes more apparent. Open SNAP and start 
with our combined S1 and S2 products as collocated.

Firstly we want to identify water bodies and non-vegetated areas in the Senti-
nel-2 part of the collocated image. For this, we use the NDVI to identify water bod-
ies and the vegetated and non-vegetated areas at once [39]. This is because, in the 
RGB view of the subset, we worked with pins for different spectra and observed for 
the vegetation spectra the high reflectance and the low reflectance (Fig. 6).

Fig. 5. The preprocessed Sentinel-1 image (a), Sentinel-2 image (b) and the merged product (c)

a)

b)

c)
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In Band Maths we created the NDVI Band: “Raster – Band Maths, Name: NDVI”. 
The expression is the difference between B8 and B4 (we normalize by dividing by 
their sum). As a result, a greyscale image will be created. We want to extract the 
water bodies and non-vegetated areas by thresholding these NDVI values. We can 
illustrate that by choosing masks from the histogram. NDVI has negative values for 
water bodies, intermediate values (0.0–0.5) for non-vegetated or bare soil areas, and 
large values towards 1 for vegetated areas. By thresholding the NDVI values using 
the Mask Manager, we converted the mask into a layer. Firstly we have created the 
mask for the water bodies named S2_water (NDVI should be smaller than −0.05), 
then, in the same way, we continue with creating the mask for the non-vegetated 
areas or bare soil areas named S2_non_veg (NDVI > −0.05 and NDVI < 0.5).

In our image, we can see the water mask in blue for the river and also the water 
bodies as well as water in the areas where mining operations are no longer present. 
As a result, we can identify the water ponds as well as the river. But there is no view 
in the regions with clouds and no view of the very small water ponds.

From the mask for the non-vegetated area, we see the mine masked to identify 
the open pit areas, but we have some urban structures masked as non-vegetated 

Fig. 6. Exploring the spectral information of the region of interest
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areas. Compared with our natural color view (RGB), even the clouds are identified 
as non-vegetated areas. We have no identification of exactly the non-vegetated ar-
eas corresponding to mining operation areas. Figure 7 presented the application of 
the water mask and the non-vegetated mask in the Sentinel-2 part of the collocated 
image.

a)

b)

c)

d)

Fig. 7. Choosing masks from the histogram (a, b, c) and application in the Sentinel-2 part 
of the collocated image (d): the mask for water bodies (NDVI < −0.05) in the left; the mask 
for the non-vegetated areas or bare soil areas (NDVI > −0.05 and NDVI < 0.5) in the right; 

natural color view (RGB) in the middle
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Secondly, we aimed to identify water bodies and non-vegetated areas in the 
Sentinel-1 part of the collocated image and therefore we continued creating the wa-
ter mask for the Sentinel-1 bands. We made use of the fact that water surfaces spec-
ularly reflect the microwave radiation away from the sensor, so the signal is low 
in that case. We can illustrate that by choosing the scatterplot selected bands from 
Sentinel-1 where the VH band stands for the x-axis and the VV band for the y-axis.

In the scatter plot, we can see the VH and VV values distribution. We can see 
that the majority of the values are centered around −20 dB or lower for the VH po-
larization and −15 dB or lower for the VV polarization. We set these values in Band 
Math, then create the mask in Mask Manager, and we can see the water bodies in 
light blue in our image (Fig. 8).

Fig. 8. Application in the Sentinel-1 part of the collocated image the mask for water bodies
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In the next step, we aim to create a mask for the non-vegetated areas from the 
Sentinel-1 bands. We exploit that bare soil has a high VV-VH ratio and small VH 
and VV values. From the scatter plot, the surface soil cover is characterized by back-
scatter values of around −17 dB or lower for the VH polarization and 6 dB or greater 
for the sigma ratio. We set these values in Band Math then create the mask in Mask 
Manager and see that the bare soil is dark brown in our image (Fig. 9).

Fig. 9. Application in the Sentinel-1 part of the collocated image the mask  
for non-vegetated areas
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Figure 10 shows the application of a water mask for both Sentinel-1 and Sen-
tinel-2 images. The Sentinel-2 water mask cannot identify small ponds but suc-
cessfully identified the river, while for a cloudy area, no information was present. 
After we added a water mask from Sentinel-1, it missed a part of the river, but it 
identified the water ponds in the cloudy area, and it also identified the very small 
water ponds.

Fig. 10. Application of the mask for water bodies:  
a) Sentinel-2 part (blue color); b) Sentinel-1 part (light blue);  

c) both masks (blue color for Sentinel-2 and light blue for Sentinel-1)

a) b) c)

Fig. 11. Application of the mask for non-vegetated areas: a) Sentinel-2 part;  
b) Sentinel-1 part; c) collocated image with both masks; d) RGB part

a) b) c) d)

Figure 11 reveals the mask application for non-vegetated areas for both Senti-
nel-1 and Sentinel-2 images.
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We can see that the mask in the Sentinel-2 part successfully identifies the open 
pit areas that are not vegetated and identifies urban structures as non-vegetated 
(further refinement would be needed to identify only areas that correspond with 
mine operations), wrongly identifying the cloudy area as non-vegetated area. Add-
ing in the Sentinel-1 non-vegetated mask can help to roughly identify the non-vege-
tated areas of mining operations and correct the view of the non-vegetated areas in 
the cloudy part.

5. Discussion

Remote sensing has become a routine approach for land surface water bod-
ies and vegetation monitoring because the acquired data can provide high-quality 
information, which is substantially different from conventional in situ measure-
ments [40, 41]. Various methods, including unsupervised and supervised classi-
fication and spectral water indexes, have been developed to extract water bodies 
from different remote sensing images. The combination of Sentinel-1 and Sentinel-2 
scenes helps monitor the water bodies and non-vegetated areas because we can ob-
tain microwave information (Sentinel-1 different polarization bands) and visible/
infrared information (Sentinel-2 – 12 bands) having a broad wave data and using 
their complementary information content.

We used the NDVI in this study not to study vegetation but to exclude it as 
our study aimed to identify water bodies and non-vegetation areas. The NDVI val-
ues varied between −1 to +1. With the increase of vegetation cover, the value in-
creased to +1. At the same time, non-vegetated areas were close to 0 and negative for 
the NDVI in water bodies.

For the identification of water bodies, we don’t use the NDWI index because 
this can mainly be used for clear water spectra and is limited by contaminated wa-
ter bodies (variety of spectra) like the mining environment [10]. In this study, we 
have used NDVI in Sentinel-2 scene because it helps us identify the water and soil 
(non-vegetated areas) simultaneously. In our study, just like other authors, the use 
of NDVI helped us at the same time in the identification of water bodies as well as 
the non-vegetation areas concretely open pit areas in the optical part of the collocat-
ed image [25]. The Sentinel-2 image study, according to the authors but also our own 
data, can identify cloudy areas like non-vegetated ones [27].

In the Sentinel-1 scene, we observed that water and flat bare soil have low VH 
and VV but a large VH/VV ratio, which helped us set the correct values while 
converting the masks into layers in Mask Manager. This finding is following the 
literature [42–44]. Co-polarized (e.g., the same transmitted and received polariza-
tions) polarization radar data (HH, VV) are more suitable for water cover detec-
tion [45, 46].
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According to some authors, the backscatter of floodwater in HV and VH is the 
same, and both HV and VH polarizations are adequate for mapping floodwater [42]. 
From our scatterplot and literature, the surface water cover is characterized by back-
scatter values of around −20 dB or lower for the VH polarization and −15 dB or lower 
for the VV polarization [42, 43].

The possibility of using a high temporal and spatial resolution of the Senti-
nel-1 (S1) imagery motivated the authors to develop the methodology for its retriev-
al based on backscattering coefficient (σ°), as calculated from the VH and VV po-
larizations [44]. Our scatterplot and literature show that the surface soil cover is 
characterized by backscatter values of around −17 dB or lower for the VH polariza-
tion and 6 dB or greater for the sigma ratio [44].

6. Conclusions

Both water masks from the Sentinel-1 and Sentinel-2 images have their advan-
tages and disadvantages; however, the great potential of the merged product is that 
we can use that information to better understand the bigger picture. The merged 
product can serve as a new image with numerous characteristics from Sentinel-1 
and Sentinel-2 images.

According to our data, Sentinel-2 misses the smallest water ponds; however, it 
successfully identifies the bigger water ponds and the river. It has no information 
for cloudy areas. Meanwhile, Sentinel-1 misses a part of the river, but it identifies the 
smallest water ponds and gives additional information regarding the water ponds 
of the cloudy areas.

The non-vegetated mask from Sentinel-2 successfully identifies the open pit ar-
eas, the urban structure and also the cloud area as non-vegetated. The non-vegetated 
mask from Sentinel-1 image has a stronger contribution in identifying the vegetated 
areas and corrects the non-vegetated ones within the cloudy area. The overall find-
ings indicated that Sentinel-1 and 2 indices could only provide a similar pattern over 
vegetated areas. The application of the mask for non-vegetated areas tells us that 
they are complementary to each other. If combined, both optical and radar technol-
ogies would help overcome the identified weaknesses of each method by using the 
benefits of both.

We have identified water and the non-vegetation areas in general. Still, it would 
be more useful in the future to try to identify the part of non-vegetation which cor-
responds to mining operations utilizing further refinements. According to our re-
search purpose, the proposed methodology will help in future studies by analyzing 
the impact of mining on soil properties through the assessment of vegetation status 
using time-series evaluations.
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