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Abstract:	 Building detection in Ashwa’iyyat is a fundamental yet challenging problem, 
mainly because it requires the correct recovery of building footprints from im-
ages with high-object density and scene complexity.

	 A classification model was proposed to integrate spectral, height and textural 
features. It was developed for the automatic detection of the rectangular, irreg-
ular structure and quite small size buildings or buildings which are close to 
each other but not adjoined. It is intended to improve the precision with which 
buildings are classified using scikit learn Python libraries and QGIS.

	 WorldView-2 and Spot-5 imagery were combined using three image fusion 
techniques. The Grey-Level Co-occurrence Matrix was applied to determine 
which attributes are important in detecting and extracting buildings. The Nor-
malized Digital Surface Model was also generated with 0.5-m resolution.

	 The results demonstrated that when textural features of colour images were 
introduced as classifier input, the overall accuracy was improved in most cases. 
The results show that the proposed model was more accurate and efficient than 
the state-of-the-art methods and can be used effectively to extract the boundar-
ies of small size buildings. The use of a classifier ensample is recommended for 
the extraction of buildings.
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1.	 Introduction

Unsafe area and unplanned areas are an umbrella concept of informal settle-
ment. Within the Egyptian context, they have been known as ‘Ashwa’iyyat’. Unsafe 
areas are identified by the presence of a life-threatening threat, whereas unplanned 
areas are identified by noncompliance with planning and construction laws  [1]. 
They are suffering from problems of narrow streets, air pollution etc.

As a result, the Egyptian government developed a national strategy for improv-
ing Ashwa’iyyat, followed by an action plan to establish new towns in the desert 
toward “Egypt Without Ashwa’iyyat” by 2030 to achieve Sustainable Development 
Goal 11; “Make cities inclusive, safe, resilient, and sustainable” [2]. Building bound-
aries are traditionally drawn using photogrammetric stereo plotters and hand digi-
tization from digital photos in stereo vision. However, this is a time-consuming and 
exhausting operation that necessitates the use of trained personnel and expensive 
equipment. As a result, utilising automated ways to extract buildings has a lot of po-
tential and value [3]. Many complex factors that influence buildings extraction from 
satellite images, such as scene complexity, building inconstancy, and image resolu-
tion, affect overall accuracy for building extraction and detection [4]. The main chal-
lenge of this study is to provide precise and high accurate framework for buildings 
detection that is essential for a variety of applications [5], including urban planning 
and management, infrastructure development, and so on.

The fundamental problem with building extraction methods is that the build-
ing class is confused with other object classes such as shadows, vegetation, and the 
ground. Other issues with misclassification include misclassifying a non-building as 
a building and mixing trees and shadows. These misclassification issues, which are 
caused by a single dataset and approach, have a negative impact on the accuracy of 
the classification process. As a result, various methods and strategies have been pro-
posed to address the issues raised by the complexity of the classification process [6]. 
Another issue is that the building’s roof could be made of several surface materials 
with varying reflecting qualities, which is a challenge.

As a result of these issues, the computer vision field has become increasing-
ly complicated, resulting in errors and complexity in automatic building detection. 
Therefore, many algorithms and strategies have been developed to solve these prob-
lems [7].

In order to extract buildings, various approaches were proposed by many re-
searchers which include image-based [4, 8–11], LiDAR-based [12, 13] and data fu-
sion-based methods  [14,  15]. Although these approaches have shown promise in 
real-world applications include highly complicated scenes, such as the presence of 
barriers posed by surrounding objects, such as trees. To overcome these challenges, 
we proposed a framework to integrate multi-source image fusion technology with 
digital surface model (DSM) using machine learning (ML) techniques for buildings 
detection.
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Sohn and Dowman [16] suggested an algorithmic method for extracting build-
ings from IKONOS photos in densely populated areas. They used huge detached 
buildings in their investigation without performing any accuracy analysis or model-
ling of the structure features.

Support vector machines (SVMs), ensemble classifiers (i.e. random forest (RF)), 
and deep learning algorithms are the most commonly used techniques in the remote 
sensing society [17]. Belgiu and Drǎguţ [18] employed the RF classifier to success-
fully map urban buildings. In addition, single-date MODIS data has been used to 
categorise urban impervious surfaces [19].

Several studies [20, 21] have investigated the potential of RF classification to im-
prove urban classification from LiDAR data. In case of input datasets that could be 
used to improve categorization, it is critical to involve only related datasets to reduce 
computational burden without immolating accuracy [22]. In this case, an RF classi-
fier was used to assess the achievement of each data source to the results [22, 23].

The SVMs algorithms are kernel-based learning algorithms used in various ap-
plications [17]. Sigmoid, polynomial, radial basis etc are kernel models used to build 
different SVMs  [24]. The performance of SVMs is determined by the appropriate 
selection of a kernel function [25]. As a result, another goal of this research is to com-
pare RF and SVM classification algorithms.

The process of combining images from multiple sources into a single imagery is 
referred to as multi-source image fusion technology, where the resulted fused image 
would be more beneficial than any of the input imageries, and it has major impor-
tance to the photogrammetry tasks in computer vision [26–29]. A detailed review 
can be found in [30].

Recently, few investigations have been done on the multi-source image fusion 
classification using machine learning. The authors of [18, 31] developed a pixel-wise 
classification technique, called machine multi-level fusion network, and the authors 
of [19, 32] developed fusion-based approach called ‘SubFus’ with capability to inte-
grate remotely sensed data and ancillary dataset for land cover classification.

The current study developed a model to integrate multi-source image fusion 
technology with the normalized digital surface model (nDSM) and texture data us-
ing ML techniques for building detection and extraction. grey-level co-occurrence 
matrix (GLCM) was used to determine which attributes are important in detecting 
and extracting buildings. WorldView-2 and Spot-5 images were fused using three 
image fusion techniques: modified-IHS, wavelet-PCA, wavelet-IHS.

To classify the dataset into buildings and non-buildings, ML techniques such as 
SVMs and RF were used. To ensure the reliability of the results, dataset was divided 
into 70% for training and 30% for validation. The main objectives of this study are 
development of ML model for buildings detection and determine which attributes 
are important in detecting and extracting buildings. The performance of the RF is 
compared to that of SVMs. The results revealed that our approach outperforms oth-
er peer methods for building detection, indicating the effectiveness of our method.
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2.	 Field of Study and Data Sources

The study area (Fig. 1) is part of Greater Cairo. Greater Cairo is one of the biggest 
urban areas in Middle East and Africa. The study area is located between 29°54′50″N 
and 31°16′14″E. It is area is approximately 30 km2. The experimental tests were car-
ried out in the residential urban blocks selected in Greater Cairo.

Fig. 1. Location map of study area

The data includes representative scene of a mix of low- and high-story build-
ings with a long range of rooftop structures and small size buildings. The following 
data sources are used.

	– Cloud free WorldView-2 panchromatic stereo imagery (Tab. 1). Dated 
12 Jan 2018, with 0.5-m resolution. The overlap of images is 90%. Worldview 
stereo scenes are supplied with rational polynomial functions (RPC) sensor 
model, derived from orbit and attitude information.

Table 1. WorldView-2 image characteristics

Band Spectral range [µm] Resolution [m]

Pan 0.45–0.8 0.46 GSD (0.52 at 20° off-nadir)
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	– Spot-5 image (Tab. 2). Dated 2 July 2009. The study area is a subset from the 
scene.

Table 2. Spot-5 image characteristics

Band Spectral range [µm] Resolution [m]

B1 (Green) 0.49–0.61 10

B2 (Red) 0.61–0.68 10

B3 (NIR) 0.78–0.89 10

	– Thirty two DGPS ground control points and sixteen check points obtained from 
the field with 10-cm accuracy in X, Y, Z. The location of the points was selected us-
ing random stratified method to constitute various land cover classes of the area.

3.	 Methodology
Figure 2 illustrates the building detection framework and an illustration of the 

framework will be described in the following sections.
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Fig. 2. Framework of building detection using machine learning algorithms
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3.1.	 Image Orientation

The LPS environment [33] was used to produce Digital Surface Model (DSM) 
and image orientation of the stereo images. The process flow chart is illustrated in 
Figure 3.

Fig. 3. Process flowchart

Creating Block (.blk) Files
The process in LPS starts with making a block project file defining the geometric 

model as RPC model. The RPC file includes the third degree polynomial coefficients 
that relate an image coordinates to its corresponding ground coordinates. UTM pro-
jection and WGS 84 datum have been assigned as the horizontal and vertical coordi-
nates inside the block project.

Setting up Internal and External Orientation
The interior and exterior orientations of stereo pairs are recovered by extracting 

information from RPC file. Interior orientation sets the internal geometry of a sensor 
at the image capturing time while exterior orientation set the position and angular 
orientation of the sensor that captured the image [34].
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Adding GCP Points and Automated Tie Point Generation
Automatic GCP and tie points collection were used to ensure the relative orien-

tation link the images and get a stable block. It matches a point in one image, with its 
corresponding in the other (stereomate) image using a math model (rational function 
model). During Image Matching in LPS, a link window occurs between the reference 
image and the neighbouring overlapping image. Because most buildings in very 
high-resolution images appear similar, a larger value of moving window should be 
specified for more robust matching results. Total 150 tie points were generated in the 
overlapping area whose ground coordinates are not known. Using classical point 
measurement tool four ground points are added to the images. AeroTriangulation 
errors were 0.15 pixels with GCPs, and 0.731 pixels without GCPs. 

DSM Generation
The triangulation process was run after adding GCPs and tie points to check the 

accuracy for GCPs and tie points. Thirty independent check points were utilized for 
DSM evaluation. The results revealed the RMS of 0.1 m was achieved using RPC.

Finally, the DSMs were produced with 0.5-m  resolution. nDSM  was pro-
duced by subtracting DTM from DSM. The DSM was generated using csf ground 
filtering of the DSM las point clouds. Consequently, Buildings_MinArea = 10 m2, 
Buildings_MinWidth = 3 m. Trees_MinHeight = 1.3 m, Trees_MaxHeight = 50 m, 
Trees_MinRadius = 2 m, Trees_MaxRadius = 6 m. Output_Trees = 0, Output_PowerLines = 0.

Figure 4a shows resulted DSM of the study area, while Figure 4b shows normal-
ized DSM (nDSM).

Fig. 4. Generation of digital surface models: a) DSM; b) nDSM

a)	 b)
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3.2.	 Image Ortho-rectification

The images were rectified using the DSMs with a pixel size 0.5 m and nearest 
neighbour resampling. The thirty DGPS check points were applied for orthoimage 
assessment resulted in RMS in X = 0.66, Y = 0.49, RMST = 0.82 using RPC only.

Rectification of Spot-5 Image
The Spot-5 image was rectified using 16  well-distributed GCPs obtained 

via DGPS. Images were projected to the UTM coordinate system using second order 
polynomials and the nearest neighbour algorithm as a resampling method during 
this process. The Spot-5 image was resampled to 0.5-m resolution to match the world 
view image. The precision was tested using 16 evenly distributed GCPs points. For 
the second order polynomial, the RMS  error of check points was  RMST = 0.321. 
Spot-5 was co-registered to the WorldView-2 image and resampled to a pixel size of 
0.5 m using nearest neighbour.

3.3.	 Image Fusion

Three image fusion techniques (modified-IHS, wavelet-PCA, wavelet-IHS) have 
been applied on Spot-5 and WorldView-2 images. Color preservation and spatial 
improvement were statistically evaluated in all images.

Spectral Evaluation
In general, the quality of an image-fusion technique might be determined by 

comparing the fused image to a reference image. This comparison can be done both 
visually and statistically [35].

The quality evaluation parameters used for image fusion are: mean, standard 
deviation (Std), correlation coefficient and bias of mean [36–38].

3.4.	 Textural Feature Analysis Derived from Remote Sensing Data

Texture measures such as the co-occurrence matrix have shown their potential 
for enhancing classification performance in urban environments [29, 39].

In our study, GLCM was used to derive textural features using a small window 
of 3 × 3 pixels. ENVI was used for Extracting GLCM. The computed texture features 
were: mean, variance, homogeneity, correlation, contrast, second moment, dissimi-
larity, entropy [40].

3.5.	 Classification Using Machine Learning Algorithms

Various classification strategies are used in building detection for image clas-
sification such as maximum likelihood, support vector machines etc.  [41]. In the 
current research, classifications were done using machine learning techniques; 
RF and SVMs. It is concerned with a binary classification problem. It divides the 
image into two categories: buildings and non-buildings. The classes are saved as 
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regions of interest (ROIs) in a shapefile. Each ROI has one target value (i.e., the class 
label) and several attributes (i.e. the features or observed variables). These tech-
niques can train a classifier using ROIs, and then use the relationships discovered 
during the training process to classify the remaining pixels. The classification aims 
to produce a model that predicts the target values of the test data based solely on the 
test data attributes. All tests were conducted using the same training sets. The train-
ing data consists of 623 and 1,833 training pixels for buildings and non-buildings 
respectively. All pixels are distributed randomly. Figure 5 shows the distribution of 
pixels over the image. The classifier was trained with 30% of validation per class and 
70% of training.

Fig. 5. Distribution of ROIs, light cyan pixels represent buildings and dark magenta pixels 
represent non-buildings

Classifications are implemented using nine schemes:
1)	 A file of fused image using wavelet-IHS only.
2)	 A composite file of fused image using wavelet-IHS and nDSM.
3)	 A composite file of GLCM raster of fused image using wavelet-IHS
4)	 A file of fused image using wavelet-PCA only.
5)	 A composite file of fused image using wavelet-PCA and nDSM.
6)	 A composite file of GLCM raster of fused image using wavelet-PCA
7)	 A file of fused image using modified-IHS only.
8)	 A composite file of fused image using modified-IHS and nDSM.
9)	 A composite file of GLCM raster of fused image using modified-HIS.
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These files were used as predictor variables in the classification model. Classi-
fications using all these schemes were repeated once for RF and a second time with 
SVMs, separately and individually.

Classification Using Random Forest

RF is a model that uses a random grid search to fit a figure of decision tree clas-
sifiers on different sub-samples of the dataset and then averages them to enhance 
predictive accuracy and control over-fitting. Classifiers are integrated in the scikit-
learn implementation by averaging their probabilistic prediction  [42]. Cross-vali-
dation was used to select the parameters that best generalised the data; find the 
best figure of trees, and the best figure of maximum features. The most important 
parameters are n estimators and max. features, where n estimators is the number of 
trees, and the higher the number, the better.

When dividing a node, max features is the size of the random subsets of fea-
tures. Either all input features or a random subset of size max features are used to 
find the optimal split.

Classification Using SVMs

SVMs are a set of powerful models for regression, classification and outliers 
detection [40]. SVMs with Gaussian radial basis function (RBF) is used because it 
confirmed to be effective in remote sensing applications  [43]. To find the optimal 
parameters, cross-validation was utilised. To train the dataset, the best parameters C 
and gamma were used. Finally, the model was put to the test.

The penalty parameter of the error term is parameter C. A high C means clas-
sifying all training examples correctly. Best  C gave the best results on the hold 
out data.

The parameter gamma is the kernel coefficient. In calculating the separation 
line, a low value takes only nearby points while the high value takes all the data 
points. Best ‘gamma’ that gave the best results on the hold out data.

Radial basis function (RBF) kernel K(x, y) is given by:

	 γ −= 2–, ex) p( x yK x y 	 (1)

Evaluation of the Classification

The sklearn metrics module executes several score, and utility functions to eval-
uate classification performance including kappa index, overall accuracy (OA) and 
F1 measure. OA statistical index is a number of correct classified pixels/total number 
of pixels [44]. The kappa index is a discrete multivariate analysis tool for assessing 
the accuracy of classification maps. The kappa coefficient is derived from the error 
matrix and is used to evaluate how well the classification performs in comparison 
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to the reference data. The kappa statistic is used to see if a categorization based on 
remotely sensed imagery is better than random.

The difference between the real agreement (main diagonal total) and the chance 
agreement (row or column totals) of the matrix is the kappa coefficient of agree-
ment.

Because it takes into account all elements of the confusion matrix, the kappa 
coefficient was recommended. The kappa can be defined as:

	 −
=

−
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where:
	 r	–	number of rows in error matrix,
	Xii	–	number of observations in row (i) and column (i) on the major diagonal,
	Xit	–	 total of observations in row (i) shown as marginal total of the matrix,
	Xti	–	total of observations in column (i) shown as marginal total at the bot-

tom of the matrix,
	 N	–	 total number of observations, included in the matrix [45].

The use of F1 (a combination of precision and recall) is a main difference be-
tween traditional RS and deep learning RS [46]. In most cases, neither precision nor 
recall can provide a comprehensive assessment of classification performance. Preci-
sion is the proportion of identified positives that are actually positive, whereas recall 
is the proportion of positives that are correctly identified. To compute the score, the 
F1-score takes into account both the producer’s accuracy (PA) and the user’s accura-
cy (UA, also known as precision and recall) [47]:

	 1 UA PAF
UA PA

⋅
=

′+
	 (4)

4.	 Results and Discussion

In this research a new innovative building detection model has been designed 
and developed which will reduce the system processing time and space complexity 
and give better recognition rate as compared to other existing techniques.
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Spot-5 has been co-registered to the WorldView-2 image. The used resampling 
technique was nearest neighbour for resampling to the pixel size of 0.5 m. DEM was 
generated using ground filtering technique. Followed by calculating nDSM by sub-
tracting DEM from DSM. Thirty check points were utilized for DSM evaluation. The 
resulted RMS was 0.1 m using RPC only and free of trees.

4.1.	 The Importance of Different Features
In this study, we hypothesized that derived attributes using GLCM matrix can 

be used to improve buildings detection. For GLCM construction and texture calcu-
lation, a small window of 3 × 3 pixels was used using ENVI 5.1 Software. Results re-
vealed that GLCM variance and contrast were the best Haralick textural features for 
discriminating buildings and GLCM correlation was the least effective one.

4.2.	 An Assessment of Image Fusion
In this study, image fusion of multispectral Spot-5 image (10-m resolution) and 

WorldView-2 pan image (0.5-m  resolution) has been achieved to improve the in-
formation appear in the images and to raise the reliability of the performance. Two 
images are co-registered and resampled to 0.5-m resolution.

Three image fusion techniques have been compared: 
	– wavelet-IHS, 
	– modified-IHS, 
	– wavelet-PCA.

Results show that image fusion enhanced the resolution. Three fused images 
gave better interpretation than multispectral image. Several indices were utilized to 
assess the performance of fusion. In this study, the spectral quality of fused images 
was assessed by:

	– standard deviation,
	– mean,
	– correlation coefficient,
	– bias of mean.

Table 3 gives quality metrics of fused images. The results revealed that the mean 
of the original image was 58.415. The average mean of all bands of fused images using 
wavelet-PCA, modified-IHS, wavelet-IHS were 58.148, 58.070 and 58.070 respectively. 
The standard deviation of the original image was 16.199 and the average standard de-
viation of all bands of fused image using wavelet-PCA, modified-IHS and wavelet-IHS 
were 16.111, 16.287 and 16.287 respectively. It is concluded that wavelet-PCA gave the 
least pixel errors and the three fused methods preserved the maximum sensible to the 
spectral quality of the original imagery. Correlation coefficient has been computed for 
the three fusion methods. The average correlation coefficient of all methods was 1.00 
which indicates that the fused image is similar to the original MS image and no spatial 
information is put in the fused image from panchromatic image.
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Table 3. Quality metrics of fused images

Bands
Mean of 
original 
image

St. dev. 
of 

original 
image

Mean 
of fused 
image

St. dev. 
of fused 
image

Diff. in 
mean

Diff. in 
st. dev.

Bias of 
mean

Fusion 
technique

Band 1 59.718 20.685 59.317 20.742 0.401 −0.057 0.007

Wavelet-PCA
Band 2 54.619 15.355 54.411 15.197 0.208 0.158 0.004

Band 3 60.908 12.558 60.715 12.394 0.194 0.164 0.003

AVERAGE 58.415 16.199 58.148 16.111 0.268 0.088 0.005

Band 1 59.718 20.685 59.260 20.397 0.457 0.288 0.008

Modified-IHS
Band 2 54.619 15.355 54.320 15.453 0.299 −0.099 0.005

Band 3 60.908 12.558 60.629 13.011 0.280 −0.453 0.005

AVERAGE 58.415 16.199 58.070 16.287 0.345 −0.088 0.006

Band 1 59.718 20.685 59.260 20.397 0.457 0.288 1.457

Wavelet-IHS
Band 2 54.619 15.355 54.320 15.453 0.299 −0.099 1.299

Band 3 60.908 12.558 60.629 13.011 0.280 −0.453 1.280

AVERAGE 58.415 16.199 58.070 16.287 0.345 −0.088 1.345

4.3.	 Comparison of Classification Results from Different Schemes

Classification was executed using RF and SVMs. Nine schemes were tested for 
image classification, and impact of variables was assessed. Two class labels were in-
vestigated: Buildings, and Non-Building. In the first step, Spot-5 and WorldView-2 
are fused (i.e. using wavelet-PCA method) and the resulted image was used as a pre-
dictor variable for the classification process as the first scenario. In the second step, 
eight texture attributes were generated from the fused image using Envi software to 
form the GLCM image and the generated attributes (GLCM image) were used as pre-
dictor variable for the classification process as the second scenario. In the third step, 
nDSM is layer stacked with the fused image to form a new fused image with nDSM 
that was used as predictor variable for the classification process as the third scenar-
io. Finally, the classifications were compared to each other based on kappa index, 
overall accuracy and F1 measure. All these steps were repeated, for each fusion tech-
nique, once using RF and another one for SVMs. Tables 4 and 5 show comparison 
of the train model results using RF classification and SVMs classification for differ-
ent fusion methods, respectively. Figures  6 and  7 illustrate visual comparison of 
classification maps using RF and SVMs for different fusion methods, respectively. 
SVMs were insensible to the distribution of underlying data [17]. SVMs were able 
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to address high dimensionality problems and limited training samples. Also, it was 
able to generalize well, even with small data  [17]. Other benefits comprise that no 
prior knowledge of the underlying data is required. On the other side, SVMs have 
a number of limits [48] such as it requires good kernel function and there is a scar-
city of transparency in the outcomes. Whereas, RF advantages were ease of use, it 
requires fewer parameters and no intervention [49–51]. The main barrier of RF was 
that a large quantity of trees could make it too slow.

Table 4. Comparison of schemes using RF classification

Schemes Overall 
accuracy Kappa F1 

measure
No. of 
trees

Max 
features

Fusion 
method

Fused image using wavelet-IHS 0.944 0.851 0.926 81 2

Wavelet-IHSGLCM raster of fused image 0.977 0.938 0.969 81 17

Fused image +nDSM 0.961 0.893 0.946 27 3

Fused image using wavelet-PCA 0.954 0.876 0.938 81 1

Wavelet-PCAGLCM raster of fused image 0.972 0.923 0.961 27 17

Fused image +nDSM 0.967 0.913 0.957 27 2

Fused image using modified-IHS 0.940 0.839 0.919 81 2

Modified-IHSGLCM raster of fused image 0.977 0.938 0.969 81 17

Fused image +nDSM 0.958 0.885 0.943 27 3

Table 5. Comparison of schemes using SVMs classification

Schemes Overall 
accuracy Kappa F1 

measure
Best 

gamma Best C Fusion 
method

Fused image using wavelet-IHS 0.954 0.877 0.938 1.0 10,000.0

Wavelet-IHSGLCM raster of fused image 0.968 0.911 0.955 0.25 10.0

Fused image +nDSM 0.965 0.904 0.952 8.0 100.0

Fused image using wavelet-PCA 0.965 0.906 0.953 0.5 10,000.0

Wavelet-PCAGLCM raster of fused image 0.973 0.927 0.963 0.0625 10.0

Fused image +nDSM 0.973 0.926 0.963 0.5 10,000.0

Fused image using modified-IHS 0.944 0.849 0.924 8.0 1000.0

Modified-IHSGLCM raster of fused image 0.967 0.911 0.955 0.25 10.0

Fused image +nDSM 0.958 0.885 0.943 1.0 10,000.0
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Our results indicated RF might outperform SVM for image classification as 
in [52, 53].

It is clear that when textural features of colour images were used as input to 
the classifiers, the overall accuracy, F1 measure and kappa are improved in most 
instances. This followed by integrating nDSM as a layer with the fused image com-
paring to using the fused image only. The results demonstrated that the difficulty 
in classifying spectral complex urban settings might be controlled by incorporating 
textural features.

Fig. 6. Classification maps of different schemes for urban detection using random forest.  
The yellow colour represents buildings and the blue colour represents non-buildings

Fig. 7. Classification maps of different schemes for urban detection using SVMs.  
The yellow colour represents buildings and the blue colour represents non-buildings
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Using fused images only overall accuracy  (OA) reached 0.944, 0.954, 0.940 of 
wavelet-IHS, wavelet-PCA, and modified-IHS respectively using RF  classification 
and OA reached 0.954, 0.965, 0.944 using SVMs classification.

Using textural features with fused images improved the accuracy of classifi-
cation, and the OA reached  0.977, 0.972, 0.977 of wavelet-IHS, wavelet-PCA, and 
modified-IHS respectively using RF classification and OA reached 0.968, 0.973 and 
0.967 using SVMs classification.

Using fused image plus nDSM revealed  OA of  0.961, 0.967, 0.958 of wave-
let-IHS, wavelet-PCA, and modified-IHS respectively using RF  classification and 
OA reached 0.965, 0.973 and 0.958 using SVMs classification which is also improved 
the classification compared to using fused image only.

Based on the visual evaluation of the results we can state that almost all build-
ings were delineated successfully if they were larger than the expected minimum 
buildings area (30 and 50 m2).

In these experiments, the error was mainly caused by the merchant ships be-
cause the classification of ships depends on size and area, a factor which may be near 
or close to that of the building. Based on the area and size, the classifier mistakenly 
categorizes the ships as buildings.

5.	 Conclusion

The contribution of this research can be summarized as developing machine 
learning-based image fusion framework for building detection with its evaluation 
criteria. This model solved the building detection problem connected to the irreg-
ular structure and closeness of different buildings in urban areas. Three image fu-
sion techniques were used to fuse Spot-5 and WorldView-2 images. The three fused 
images gave better interpretation than multispectral images. It is concluded that 
wavelet-PCA gave the least pixel errors and the three fused methods preserved the 
maximum sensible to the spectral quality of the original image.

To sum up, first, the impact of data labelling approach on the classification re-
sults. Second, our outcomes outperformed other peer methods. Third, a model to 
integrate spectral, height and textural information was proposed. It was found that 
textural features enhanced the accuracy of classification, and the overall accuracy 
reached 0.977, 0.972, 0.977 of wavelet-IHS, wavelet-PCA and modified-IHS respec-
tively using random forest classification and overall accuracy reached 0.968, 0.973 
and 0.967 using Support vector machines classification. Fourth, based on the results, 
random forest gave better results compared to support vector machines. Fifth, the 
results obtained in this study indicated that the developed procedure could be effec-
tively used to delineate the boundaries of the rectangular shaped buildings, build-
ings with irregular shapes and quite small size ones with reliable accuracy. Sixth, 
it is recommended to use classifier ensample for buildings extraction. Finally, the 
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proposed method is a valuable and effective for the prevention and trace of unor-
ganized urbanization and can be used with other images.

Future work includes applying the developed model with the usage of other 
images in different locations.
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